

Unit Loading/Fan Out

Pin Names	Description	$54 F / 74 F$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I O H}_{\mathbf{O H}} / \mathbf{I O L}_{\mathbf{O L}}$
	A Operand Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
C_{0}	Carry Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{3}$	Sum Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
C_{4}	Carry Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F283 adds two 4-bit binary words (A plus B) plus the incoming Carry (C_{0}). The binary sum appears on the Sum $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and outgoing carry $\left(\mathrm{C}_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$
\begin{gathered}
2^{0}\left(A_{0}+B_{0}+C_{0}\right)+2^{1}\left(A_{1}+B_{1}\right) \\
+2^{2}\left(A_{2}+B_{2}\right)+2^{3}\left(A_{3}+B_{3}\right) \\
=S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4} \\
\text { Where }(+)=\text { plus }
\end{gathered}
$$

Interchanging inputs of equal weight does not affect the operation. Thus $\mathrm{C}_{0}, \mathrm{~A}_{0}, \mathrm{~B}_{0}$ can be arbitrarily assigned to pins 5, 6 and 7 for DIPS, and 7, 8 and 9 for chip carrier packages. Due to the symmetry of the binary add function, the 'F283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). See Figure 1. Note that if C_{0} is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.
Due to pin limitations, the intermediate carries of the 'F283 are not brought out for use as inputs or outputs. However,
other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure 2 shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder $\left(\mathrm{A}_{3}, \mathrm{~B}_{3}\right)$ LOW makes S_{3} dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure 3 shows a way of dividing the 'F283 into a 2 -bit and a 1-bit adder. The third stage adder $\left(\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{~S}_{2}\right)$ is used merely as a means of getting a carry (C_{10}) signal into the fourth stage (via A_{2} and B_{2}) and bringing out the carry from the second stage on S_{2}. Note that as long as A_{2} and B_{2} are the same, whether HIGH or LOW, they do not influence S_{2}. Similarly, when A_{2} and B_{2} are the same the carry into the third stage does not influence the carry out of the third stage. Figure 4 shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs S_{0}, S_{1} and S_{2} present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure 5 shows one method of implementing a 5 -input majority gate. When three or more of the inputs $l_{1}-l_{5}$ are true, the output M_{5} is true.

	C_{0}	A_{0}	A_{1}	A_{2}	A_{3}	B_{0}	B_{1}	B_{2}	B_{3}	S_{0}	S_{1}	S_{2}	S_{3}	C_{4}
Logic Levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Active HIGH: $0+10+9=3+16 \quad$ Active LOW: $1+5+6=12+0$
FIGURE 1. Active HIGH versus Active LOW Interpretation

Functional Description (Continued)

FIGURE 4. 5-Input Encoder
TL/F/9513-7

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specif please contact the Nation Office/Distributors for availa	devices are required, Semiconductor Sales ity and specifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias Plastic	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\circledR}$ Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min)	4000 V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 2: Either voltage limit or current lim	sufficient to protect inputs.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, Office/Distributors for availability and specifications.
Storage Temperature

Ambient Temperature under Bias Plastic

VCC Pin Potential to

Input Voltage (Note 2)

Voltage Applied to Output

$$
\begin{aligned}
& \text { Standard Output } \\
& \text { TRI-STATE }{ }^{\circledR} \text { Output }
\end{aligned}
$$

$$
\text { twice the rated } \mathrm{IOL}_{\mathrm{OL}}(\mathrm{~mA})
$$

ESD Last Passing Voltage (Min)
4000 V
be damaged or have its useful life impaired. Functional operation under

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \text { 54F 10\% VCC } \\ & \text { 74F 10\% } \mathrm{V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{IOL}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \\ & \hline \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{V}_{\text {IOD }}=150 \mathrm{mV} \\ & \text { All Other Pins Grounded } \end{aligned}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{C}_{\mathrm{O}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Curre			36	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Curre			36	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{C}_{0} \text { to } \mathrm{S}_{\mathrm{n}}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n} or B_{n} to S_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C_{0} to C_{4}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} or B_{n} to C_{4}			7.5 7.0					ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

16-Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, EIAJ (SJ)
NS Package Number M16D

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

