

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix = SCX and SJX.
Note 2: Military grade device with environmental and burn-in processing. Use suffix $=\mathrm{DMQB}, \mathrm{FMQB}$ and LMQB .

Logic Symbols

TL/F/9504-5
TRI-STATE is a registered trademark of National Semiconductor Corporation.

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Multiplexer Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Z	TRI-STATE Multiplexer Output	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
\bar{Z}	Complementary TRI-STATE Multiplexer Output	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

This device is a logical implementation of a single-pole, 8 position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input $(\overline{O E})$ is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{array}{r}
\mathrm{Z}=\overline{\mathrm{OE}} \bullet\left(\mathrm{I}_{0} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\right. \\
\mathrm{I}_{2} \bullet \mathrm{~S}_{0} \bullet \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{3} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+ \\
\mathrm{I}_{4} \bullet \mathrm{~S}_{0} \bullet \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{5}^{\bullet} \mathrm{S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+ \\
\\
\left.\mathrm{I}_{6} \bullet \mathrm{~S}_{0} \bullet \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{7} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}\right)
\end{array}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

Truth Table

Inputs					Outputs	
$\mathbf{O E}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\overline{\mathbf{Z}}$	\mathbf{Z}	
H	X	X	X	Z	Z	
L	L	L	L	\bar{I}_{0}	I_{0}	
L	L	L	H	\bar{I}_{1}	I_{1}	
L	L	H	L	\bar{I}_{2}	I_{2}	
L	L	H	H	\bar{I}_{3}	I_{3}	
L	H	L	L	$\overline{\mathrm{I}}_{4}$	I_{4}	
L	H	L	H	\bar{I}_{5}	I_{5}	
L	H	H	L	\bar{I}_{6}	I_{6}	
L	H	H	H	\bar{I}_{7}	I_{7}	

H = HIGH Voltage Level
L $=$ LOW Voltage Level
$X=$ Immaterial
Z = High Impedance

Logic Diagram

TL/F/9504-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias Plastic
V_{CC} Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2) Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$ Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
${ }_{\mathrm{IIH}}$	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{array}{r} 20.0 \\ 5.0 \end{array}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{array}{r} 250 \\ 50 \\ \hline \end{array}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Cu				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IOZL	Output Leakage Cu				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Curre			15	22	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Curre			16	24	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{Z}}$	$\begin{aligned} & 3.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.0 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Z	$\begin{array}{r} 4.5 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I_{n} to \bar{Z}	$\begin{array}{r} 3.0 \\ 1.5 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{n} to Z	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{Z}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tphZ } \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{O}}$ to $\overline{\mathrm{Z}}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{O}}$ to Z	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to Z	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

detail A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

