

54F/74F251A 8-Input Multiplexer with TRI-STATE® Outputs

General Description

The 'F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Features

- Multifunctional capability
- On-chip select logic decoding
- Inverting and non-inverting TRI-STATE outputs

Commercial	Military	Package Number	Package Description			
74F251APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line			
	54F251ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line			
74F251ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC			
74F251ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F251AFM (Note 2)	W16A	16-Lead Cerpack			
	54F251ALL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

54F/74F251A 8-Input Multiplexer with TRI-STATE Outputs

November 1994

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
S ₀ -S ₂	Select Inputs	1.0/1.0	20 µA/−0.6 mA		
$\frac{S_0 - S_2}{OE}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA		
I ₀ -I ₇	Multiplexer Inputs	1.0/1.0	20 µA/−0.6 mA		
Z	TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)		
Z	Complementary TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Output Enable input $\overline{(OE)}$ is active LOW. When it is activated, the logic function provided at the output is:

t the output is.
$= \overline{OE} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 \bullet$
$I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_1 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_1 \bullet S_1 \bullet S_2 + I_3 \bullet S_2 + I$
$I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 + I_5 \bullet \overline{S}_1 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 + I_5 \bullet \overline{S}_1 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 + I_5 \bullet \overline{S}_1 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 + I_5 \bullet \overline{S}_1 \bullet S_0 \bullet \overline{S}_1 \bullet S_0 + I_5 \bullet \overline{S}_1 \bullet \overline$
$I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2)$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

Logic Diagram HH HH HH HH ПΠ ПП TL/F/9504-4 Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

2

z

Truth Table

	Inp	Outputs			
ŌĒ	S ₂	S ₁	S ₀	Ī	z
Н	х	х	х	Z	Z
L	L	L	L	Īo	I ₀
L	L	L	н	Īı	l ₁
L	L	Н	L	Ī2	l ₂
L	L	н	н	Ī3	I ₃
L	н	L	L	Ī4	I ₄
L	н	L	н	Ī5	I5
L	н	Н	L	Ī ₆	I ₆
L	Н	Н	Н	Ī7	I ₇

 $\begin{array}{l} \mathsf{H} \ = \ \mathsf{H}\mathsf{I}\mathsf{G}\mathsf{H} \ \mathsf{Voltage} \ \mathsf{Level} \\ \mathsf{L} \ = \ \mathsf{L}\mathsf{OW} \ \mathsf{Voltage} \ \mathsf{Level} \end{array}$

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Electrical Characteristics

Supply Voltage Military Commercial 54F/74F

Current Applied to Output

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

twice the rated I_{OL} (mA)

-55°C to +125°C $0^{\circ}C$ to $\,+\,70^{\circ}C$

+4.5V to +5.5V

 $+\,4.5V$ to $\,+\,5.5V$

in LOW State (Max)

these conditions is not implied.

Free Air Ambient Temperature

Conditions

Military

Commercial

Symbol	Parameter		54F/74F			Units	Vcc	Conditions	
Cymbol	Falanetei		Min	in Typ Max		onits	•00	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			v	Min		
V _{OL}	Output LOW Voltage	Dutput LOW 54F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V_{ID}	Input Leakage Test	74F	4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$	
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$	
I _{CCL}	Power Supply Current			15	22	mA	Max	$V_{O} = LOW$	
I _{CCZ}	Power Supply Current			16	24	mA	Max	V _O = HIGH Z	

3

Symbol		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 pF$			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		
	Parameter								Units
		Min	Тур	Max	Min	Max	Min	Мах	1
t _{PLH} t _{PHL}	Propagation Delay S_n to \overline{Z}	3.5 3.2	6.0 5.0	9.0 7.5	3.5 3.2	11.5 8.0	3.5 3.2	9.5 7.5	ns
t _{PLH} t _{PHL}	Propagation Delay S _n to Z	4.5 4.0	7.5 6.0	10.5 8.5	3.5 3.0	14.0 10.5	4.5 4.0	12.5 9.0	ns
t _{PLH} t _{PHL}	Propagation Delay I_n to \overline{Z}	3.0 1.5	5.0 2.5	6.5 4.0	2.5 1.5	8.0 6.0	3.0 1.5	7.0 5.0	ns
t _{PLH} t _{PHL}	Propagation Delay I _n to Z	3.5 3.5	5.0 5.5	7.0 7.0	2.5 3.5	9.0 9.0	2.5 3.5	8.0 7.5	ns
t _{PZH} t _{PZL}	Output Enable Time \overline{OE} to \overline{Z}	2.5 2.5	4.3 4.3	6.0 6.0	2.0 2.5	7.0 7.5	2.5 2.5	7.0 6.5	_ ns
^I PHZ ^I PLZ	Output Disable Time \overline{OE} to \overline{Z}	2.5 1.5	4.0 3.0	5.5 4.5	2.5 1.5	6.0 5.0	2.5 1.5	6.0 4.5	
^E PZH EPZL	Output Enable Time \overline{OE} to Z	3.5 3.5	5.0 5.5	7.0 7.5	3.0 3.5	8.5 9.0	3.0 3.5	7.5 8.0	
PHZ	Output Disable Time	2.0 1.5	3.8 3.0	5.5 4.5	2.0 1.5	5.5 5.5	2.0 1.5	5.5 4.5	– ns

5

7

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.