

R1WV6416R Series

64Mb Advanced LPSRAM (4M word x 16bit / 8M word x 8bit)

REJ03C0368-0001 Preliminary Rev.0.01 2008.03.24

Description

The R1WV6416R Series is a family of low voltage 64-Mbit static RAMs organized as 4,194,304-word by 16-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies.

The R1WV6416R Series is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives.

The R1WV6416R Series is provided in 48-pin thin small outline package [TSOP (I): 12mm x 20mm with pin pitch of 0.5mm], 52-pin micro thin small outline package [µTSOP (II): 10.79mm x 10.49mm with pin pitch of 0.4mm] and 48-ball fine pitch ball grid array [f-BGA] package. It gives the best solution for compaction of mounting area as well as flexibility of wiring pattern of printed circuit boards.

Features

- Single 2.7~3.6V power supply
- Small stand-by current: 8 µA (3.0V, typical)
- No clocks, No refresh
- All inputs and outputs are TTL compatible.
- Easy memory expansion by CS1#, CS2, LB# and UB#
- Common Data I/O
- Three-state outputs: OR-tie Capability
- OE# prevents data contention on the I/O bus

Ordering Information

Type No.	Access time	Package
R1WV6416RSA-5S%	55 ns ^{*1}	12mm x 20mm 48-pin plastic TSOP (I)
R1WV6416RSA-7S%	70 ns	(normal-bend type) (48P3R)
R1WV6416RSD-5S%	55 ns ^{*1}	350 mil 52-pin plastic μ-TSOP (II)
R1WV6416RSD-7S%	70 ns	(normal-bend type) (52PTG)
R1WV6416RBG-5S%	55 ns ^{*1}	f-BGA 0.75mm pitch 48-ball
R1WV6416RBG-7S%	70 ns	

Note1. 55ns parts can be supported under the condition of the input timing limitation toward SRAM on customer's system. Please contact our sales office in your region, in case of the inquiry for 55ns parts.

%	Temperature Range
R	0 ~ +70 °C
I	-40 ~ +85 °C

RENESAS

Page 1 of 16

Pin Arrangement

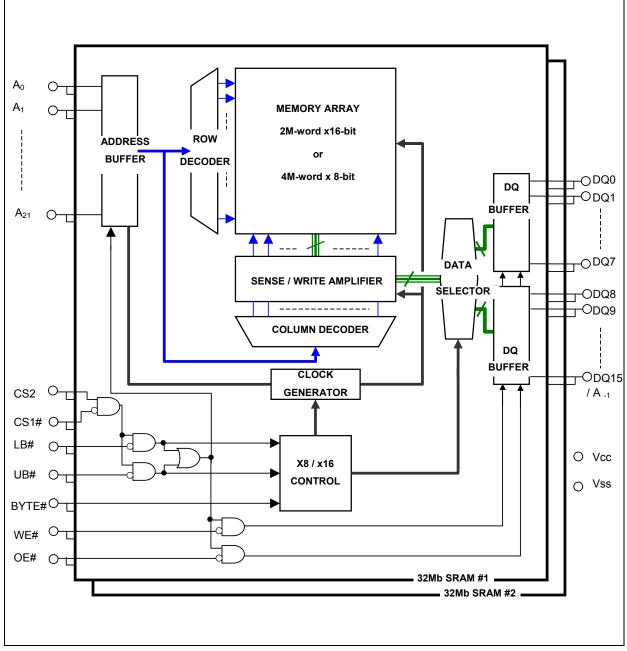
A15 1 A14 2 A13 3 A12 4 A11 5 A10 6 A9 7 A8 8 A19 9 CS1# 10 WE# 11 NC 12 NC 13 Vcc 14 CS2 15 A21 16 A20 17 A18 18 A17 19 A7 20 A6 21 A5 22 A4 23 A3 24 A2 25 A1 26	52-pin μTSOP (II)	52 A16 51 BYTE# 50 UB# 49 Vss 48 LB# 47 DQ15/A-1 46 DQ7 45 DQ14 44 DQ6 43 DQ13 42 DQ5 41 DQ4 39 NC 38 DQ11 37 DQ3 36 DQ10 35 DQ2 34 DQ9 33 DQ1 32 DQ8 31 DQ0 30 OE# 29 Vss 28 NC 27 A0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
A15 1 A14 2 A13 3 A12 4 A11 5 A10 6 A9 7 A8 8 A19 9 A20 10 WE# 11 CS2 12 A21 13 UB# 14 LB# 15 A18 16 A17 17 A7 18 A6 19 A5 20 A4 22 A2 23 A1 24		48-pin TSOP	(I)

RENESAS

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 2 of 16

Pin Description


Pin name	Function
Vcc	Power supply
Vss	Ground
A0 to A21	Address input (word mode)
A-1 to A21	Address input (byte mode)
DQ0 to DQ15	Data input/output
CS1#	Chip select 1
CS2	Chip select 2
WE#	Write enable
OE#	Output enable
LB#	Lower byte enable
UB#	Upper byte enable
BYTE#	Byte control mode enable
NC	Non connection

Note: BYTE# pin is supported for 48-pin TSOP (I) and 52-pin μ TSOP (II) packages.

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 3 of 16

Block Diagram

RENESAS

Note: BYTE# pin is supported for 48-pin TSOP (I) and 52-pin μ TSOP (II) packages.

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 4 of 16

Operation Table

CS1#	CS2	BYTE#	LB#	UB#	WE#	OE#	DQ0~7	DQ8~14	DQ15	Operation
Н	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand-by
Х	L	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand-by
Х	Х	Н	H	Н	Х	Х	High-Z	High-Z	High-Z	Stand-by
L	Н	Н	L	Н	L	Х	Din	High-Z	High-Z	Write in lower byte
L	Н	Н	L	H	Н	L	Dout	High-Z	High-Z	Read in lower byte
L	Н	Н	H	L	L	Х	High-Z	Din	Din	Write in upper byte
L	Н	Н	Н	L	Н	L	High-Z	Dout	Dout	Read in upper byte
L	Н	Н	L	L	L	Х	Din	Din	Din	Word write
L	Н	Н	L	L	Н	L	Dout	Dout	Dout	Word read
L	Н	Н	L	L	Н	Н	High-Z	High-Z	High-Z	Output disable
L	Н	L	L	L	L	Х	Din	High-Z	A-1	Byte write
L	Н	L	L	L	Н	L	Dout	High-Z	A-1	Byte read
L	Н	L	L	L	Н	Н	High-Z	High-Z	A-1	Output disable

Note1. H: V_{IH} L:V_{IL} X: V_{IH} or V_{IL}

2. BYTE# pin is supported for 48-pin TSOP (I) and 52-pin μTSOP (II) packages.

3. When apply BYTE# ="L", please assign LB#=UB#="L".

Absolute Maximum Ratings

Parameter	Symbol		Value	unit
Power supply voltage relative to Vss	Vcc		-0.5 to +4.6	V
Terminal voltage on any pin relative to Vss	VT		-0.5 ^{*1} to Vcc+0.3 ^{*2}	V
Power dissipation	PT		0.7	W
	Topr ^{*3}	R ver.	0 to +70	°C
Operation temperature	ropr	I ver.	-40 to +85	°C
Storage temperature range	Tstg		-65 to 150	°C
Starage temperature range under hiss	Tbias ^{*3}	R ver.	0 to +70	°C
Storage temperature range under bias	TDIAS	l ver.	-40 to +85	°C

Note 1. –2.0V in case of AC (Pulse width ≤30ns)

2. Maximum voltage is +4.6V.

3. Ambient temperature range depends on R/I-version. Please see table on page 1.

Recommended Operating Conditions

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage		Vcc	2.7	3.0	3.6	V	
		Vss	0	0	0	V	
Input high voltage		V _{IH}	2.4	-	Vcc+0.2	V	
Input low voltage	Input low voltage		-0.2	-	0.4	V	1
Ambient temperature range	R ver.	Та	0	-	+70	°C	2
	l ver.		-40	-	+85	°C	2

Note 1. –2.0V in case of AC (Pulse width \leq 30ns)

2. Ambient temperature range depends on R/I-version. Please see table on page 1.

DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions ^{*3}		
Input leakage current	I _{LI}	-	-	1	μA	Vin = Vss to Vcc			
Output leakage current	I _{LO}	-	-	1	μΑ	$\begin{array}{l} BYTE\# \geq Vcc - 0.2V \text{ or } BYTE\# \leq 0.2V \\ CS1\# = V_{IH} \text{ or } CS2 = V_{IL} \text{ or} \\ OE\# = V_{IH} \text{ or } WE\# = V_{IL} \text{ or} \\ LB\# = UB\# = V_{IH}, VI/O = Vss \text{ to } Vcc \end{array}$			
Average operating current	I _{CC1}	-	45 ^{*1}	60	mA	BYTE#≥	e, duty =100%, II/O = 0mA : Vcc -0.2V or BYTE# ≤ 0.2V /ı∟, CS2 =VıH, Others = VıH/Vı⊥		
	Icc2	-	5 ^{*1}	10	mA	BYTE#≥ CS1#≤0	µs, duty =100%, II/O = 0mA : Vcc -0.2V or BYTE# ≤ 0.2V 0.2V, CS2 ≥ V _{CC} -0.2V, -0.2V, V _{IL} ≤ 0.2V		
Standby current	I _{SB}	-	0.1 ^{*1}	0.3	mA	BYTE#≥ CS2 =V⊩	Vcc -0.2V or BYTE# ≤ 0.2V		
Standby current		-	8 ^{*1}	24	μA	~+25°C	Vin ≥ 0V BYTE# ≥ Vcc -0.2V or		
		-	14 ^{*2}	48	μA	~+40°C	BYTE# $\leq 0.2V$ (1) 0V $\leq CS2 \leq 0.2V$ or (2) 021# $\geq V = 0.2V$		
	I _{SB1}	-	-	100	μA	~+70°C	(2) CS1# ≥ V_{CC} -0.2V, CS2 ≥ V_{CC} -0.2V or (3) LB# = UB# ≥ V_{CC} -0.2V,		
		-	-	160	μA	~+85°C	$CS1\# \le 0.2V,$ $CS2 \ge V_{CC}-0.2V$		
Output high voltage	V _{он}	2.4	-	-	V	BYTE# ≥ Vcc -0.2V or BYTE# ≤ 0.2V I _{OH} = -0.5mA			
Output low voltage	V _{OL}	-	-	0.4	V	-	Vcc -0.2V or BYTE# ≤ 0.2V		

Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 25°C), and not 100% tested.

RENESAS

2. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 40° C), and not 100% tested.

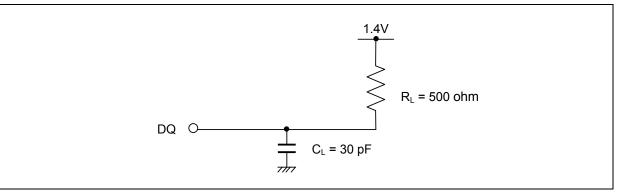
3. BYTE# pin is supported for 48-pin TSOP (I) and 52-pin µTSOP (II) packages.

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 6 of 16

Capacitance

(Ta =25°C, f =1MHz)


Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
C in	-	-	20	pF	Vin =0V	1
C 1/0	-	-	20	pF	V _{I/O} =0V	1
	C in	C in -	C in	C in 20	C in 20 pF	C in 20 pF Vin =0V

Note1. This parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Vcc = $2.7V \sim 3.6V$, Ta = $0 \sim +70^{\circ}C / -40 \sim +85^{\circ}C^{*1}$)

- Input pulse levels: V_{IL} = 0.4V, V_{IH} = 2.4V
- Input rise and fall time: 5ns
- Input and output timing reference level: 1.4V
- Output load: See figures (Including scope and jig)

Note1. Ambient temperature range depends on R/I-version. Please see table on page 1.

Read Cycle

Parameter	Symbol		16R**-5S te 0)	R1WV64	16R**-7S	Unit	Note
		Min.	Max.	Min.	Max.		
Read cycle time	t _{RC}	55	-	70	-	ns	
Address access time	t _{AA}	-	70	-	70	ns	
Chip select access time	t _{ACS1}	-	55	-	70	ns	
Chip select access time	t _{ACS2}	-	55	-	70	ns	
Output enable to output valid	t _{OE}	-	25	-	35	ns	
Output hold from address change	t _{он}	10	-	10	-	ns	
LB#, UB# access time	t _{BA}	-	55	-	70	ns	
Chip select to output in low-Z	t _{CLZ1}	10	-	10	-	ns	2,3
Chip select to output in low-2	t _{CLZ2}	10	-	10	-	ns	2,3
LB#, UB# enable to low-Z	t _{BLZ}	5	-	5	-	ns	2,3
Output enable to output in low-Z	t _{oLZ}	5	-	5	-	ns	2,3
Chip deselect to output in high-Z	t _{CHZ1}	0	20	0	25	ns	1,2,3
Chip deselect to output in high-z	t _{CHZ2}	0	20	0	25	ns	1,2,3
LB#, UB# disable to high-Z	t _{BHZ}	0	20	0	25	ns	1,2,3
Output disable to output in high-Z	t _{онz}	0	20	0	25	ns	1,2,3

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 8 of 16

Write Cycle

Parameter	Symbol	-	16R**-5S te 0)	R1WV64	16R**-7S	Unit	Note
		Min.	Max.	Min.	Max.		
Write cycle time	t _{wc}	55	-	70	-	ns	
Address valid to end of write	t _{AW}	50	-	65	-	ns	
Chip select to end of write	t _{CW}	50	-	65	-	ns	5
Write pulse width	t _{WP}	40	-	55	-	ns	4
LB#, UB# valid to end of write	t _{BW}	50	-	65	-	ns	
Address setup time	t _{AS}	0	-	0	-	ns	6
Write recovery time	t _{WR}	0	-	0	-	ns	7
Data to write time overlap	t _{DW}	25	-	35	-	ns	
Data hold from write time	t _{DH}	0	-	0	-	ns	
Output enable from end of write	tow	5	-	5	-	ns	2
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	ns	1,2
Write to output in high-Z	t _{WHZ}	0	20	0	25	ns	1,2

Note0. 55ns parts can be supported under the condition of the input timing limitation toward SRAM on customer's system. Please contact our sales office in your region, in case of the inquiry for 55ns parts. In case of t_{AA} =70ns, t_{RC} =70ns.

1. t_{CHZ}, t_{OHZ}, t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

2. This parameter is sampled and not 100% tested.

3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.

4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#.

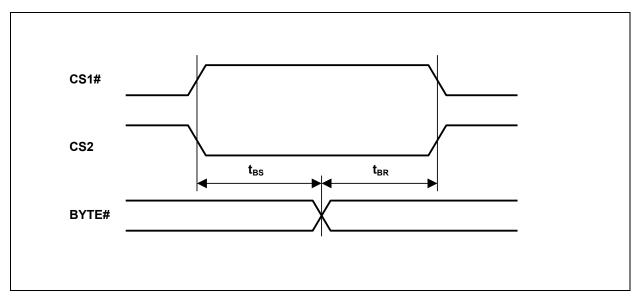
A write begins at the latest transition among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low .

A write ends at the earliest transition among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. t_{WP} is measured from the beginning of write to the end of write.

5. t_{CW} is measured from the later of CS1# going low or CS2 going high to end of write.

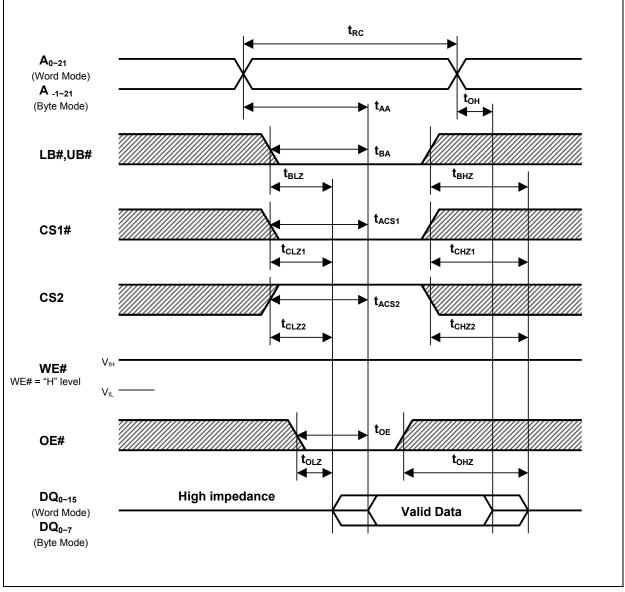
6. t_{AS} is measured the address valid to the beginning of write.

7. twR is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.


REJ03C0368-0001, Rev.0.01, 2008.03.24

BYTE# Timing Conditions

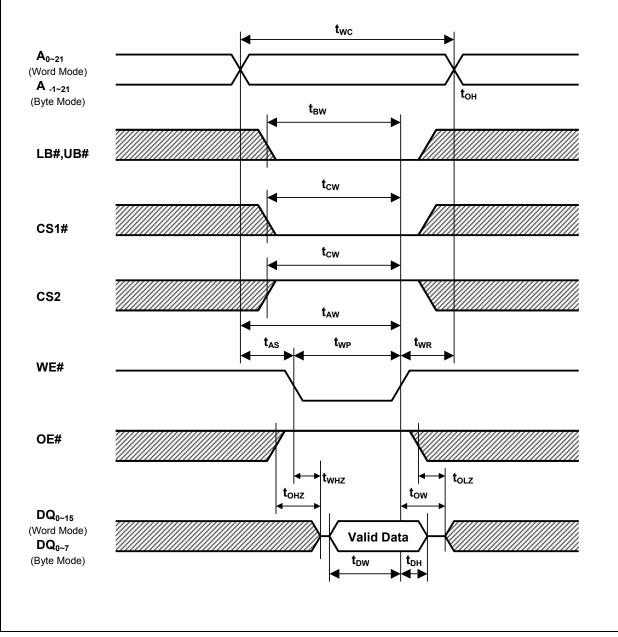
Parameter	Symbol	R1WV64	16R**-5S	R1WV64	16R**-7S	Unit	Note
raidmeter	Symbol	Min.	Max.	Min.	Max.	Onit	
Byte setup time	t _{BS}	5	-	5	-	ms	
Byte recovery time	t _{BR}	5	-	5	-	ms	


BYTE# Timing Waveforms

Page 10 of 16

Timing Waveforms

Read Cycle^{*1}

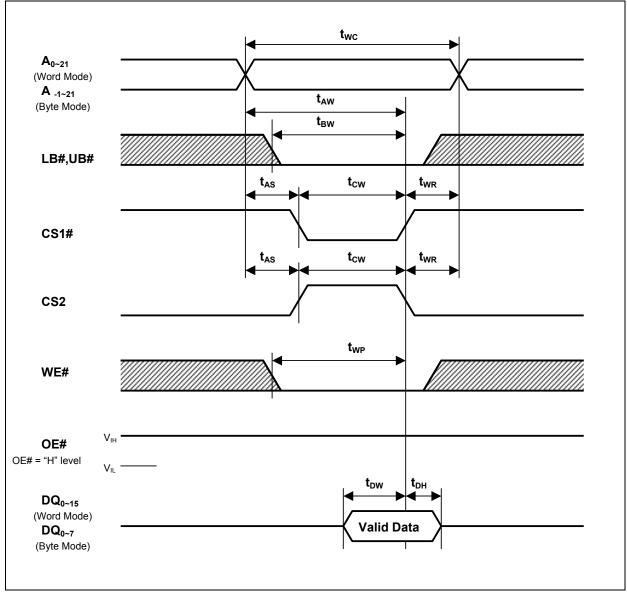

RENESAS

Note1. BYTE# ≥ Vcc – 0.2V or BYTE# ≤ 0.2V

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 11 of 16

Write Cycle (1)^{*1} (WE# CLOCK)

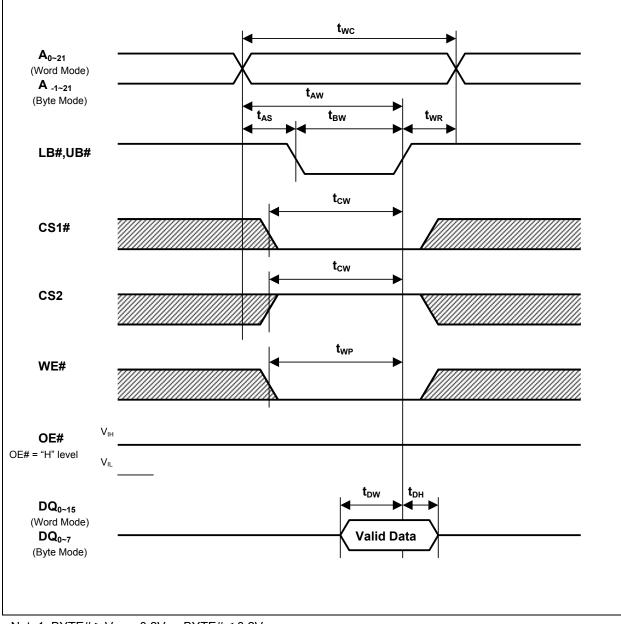

RENESAS

Note1. BYTE# ≥ Vcc – 0.2V or BYTE# ≤ 0.2V

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 12 of 16

Write Cycle (2)^{*1} (CS1#, CS2 CLOCK)


RENESAS

Note1. BYTE# ≥ Vcc – 0.2V or BYTE# ≤ 0.2V

REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 13 of 16

Write Cycle (3)^{*1} (LB#, UB# CLOCK)

RENESAS

Note1. BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V

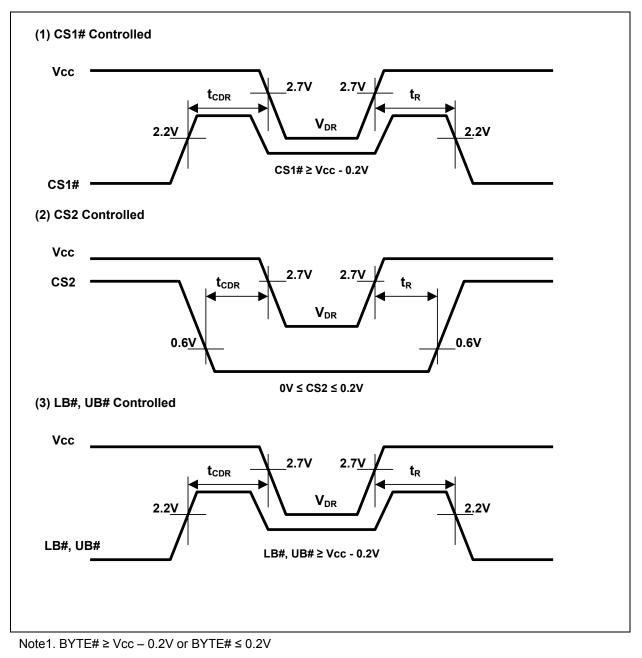
REJ03C0368-0001, Rev.0.01, 2008.03.24

Page 14 of 16

Low Vcc Data Retention Characteristics

Parameter	Symbol	Min.	Тур	Max.	Unit	Test conditions ^{*3,4}		
$V_{\rm CC}$ for data retention	V _{DR}	2.0	_	3.6	V	Vin ≥ 0V BYTE# ≥ Vcc -0.2V or BYTE# ≤ 0.2V (1) 0V ≤ CS2 ≤ 0.2V or (2) CS1# ≥ V _{CC} -0.2V, CS2 ≥ V _{CC} -0.2V or (3) LB# = UB# ≥ V _{CC} -0.2V, CS1# ≤ 0.2V, CS2 ≥ V _{CC} -0.2V		
Data retention current	I _{CCDR}	-	8 ^{*1}	24	μA	~+25°C Vin ≥ 0V BYTE# ≥ Vcc -0.2V or		
		-	14 ^{*2}	48	μA	$\begin{array}{c} \text{BYTE# } \leq 0.2V \\ \text{(1) } 0V \leq CS2 \leq 0.2V \text{ or} \\ \text{(2) } 0.021 \text{ m} > V \\ \text{(2) } 0.021 \text{ m} > V \\ \text{(2) } 0.021 \text{ m} > V \\ \text{(3) } 0.021 \text{ m} > V \\ \text{(4) } 0.021 \text{ m} > V \\ \text{(5) } 0.021 \text{ m} > V \\ \text{(5) } 0.021 \text{ m} > V \\ \text{(6) } 0.021 \text{ m} > V \\ \text{(6) } 0.021 \text{ m} > V \\ \text{(7) } 0.0$		
		-	-	100	μA	(2) $CS1\# \ge V_{CC}-0.2V$, $\sim +70^{\circ}C$ (3) $LB\# = UB\# \ge V_{CC}-0.2V$,		
		-	-	160	μA			
Chip select to data retention time	t _{CDR}	0	-	-	ns	See retention waveform.		
Operation recovery time	t _R	5	-	-	ms			

Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 25° C), and not 100% tested.


Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 40°C), and not 100% tested.
 BYTE# pin is supported for 48-pin TSOP (I) and 52-pin µTSOP (II) packages.

4. CS2 also controls address buffer, WE# buffer ,CS1# buffer ,OE# buffer ,LB# ,UB# buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE# ,OE#,CS1#,LB#,UB#,I/O) can be in the high

impedance state. If CS1# controls data retention mode, CS2 must be CS2 \geq Vcc-0.2V or0V \leq CS2 \leq 0.2V. The other input levels (address, WE# ,OE#,CS1#,LB#,UB#,I/O) can be in the high impedance state.

Low Vcc Data Retention Timing Waveforms*1

RENESAS

Page 16 of 16

Downloaded from **Elcodis.com** electronic components distributor

Revision History

R1WV6416R Data Sheet

		Contents pf Revision					
Rev.	Date	Page	Description				
0.01	Mar.24, 2008	-	Initial issue: Preliminary Data Sheet				

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: States

 Present States

 States

 Present State

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510