RENESAS

R1WV3216R Series

32Mb Advanced LPSRAM (2M wordx16bit)

REJ03C0215-0300Z Rev.3.00 2008.03.03

Description

The R1WV3216R Series is a family of low voltage 32-Mbit static RAMs organized as 2097152-words by 16-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies.

The R1WV3216R Series is suitable for memory applications where a simple interfacing , battery operating and battery backup are the important design objectives.

The R1WV3216R Series is made by stacked-micro-package technology and two chips of 16Mbit Advanced LPSRAMs are assembled in one package.

The R1WV3216R Series is packaged in a 52pin micro thin small outline mount device[µTSOP / 10.79mm x 10.49mm with the pin-pitch of 0.4mm] or a 48balls fine pitch ball grid array [f-BGA / 7.5mmx8.5mm with the ball-pitch of 0.75mm and 6x8 array]. It gives the best solution for a compaction of mounting area as well as flexibility of wiring pattern of printed circuit boards.

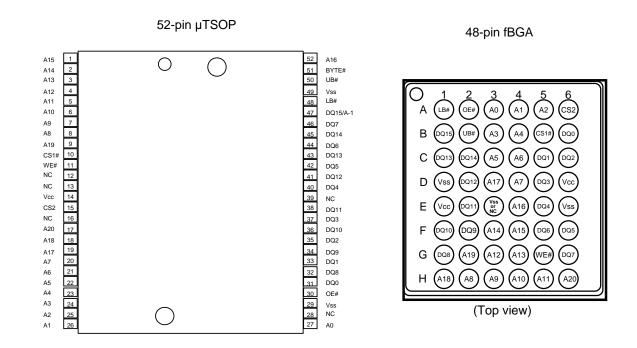
Features

- Single 2.7-3.6V power supply
- Small stand-by current:4µA (3.0V, typ.)
- Data retention supply voltage =2.0V
- No clocks, No refresh
- All inputs and outputs are TTL compatible.
- Easy memory expansion by CS1#, CS2, LB# and UB#
- Common Data I/O
- Three-state outputs: OR-tie capability
- OE# prevents data contention on the I/O bus
- Process technology: 0.15um CMOS

R1W V3216R Series

Ordering Information

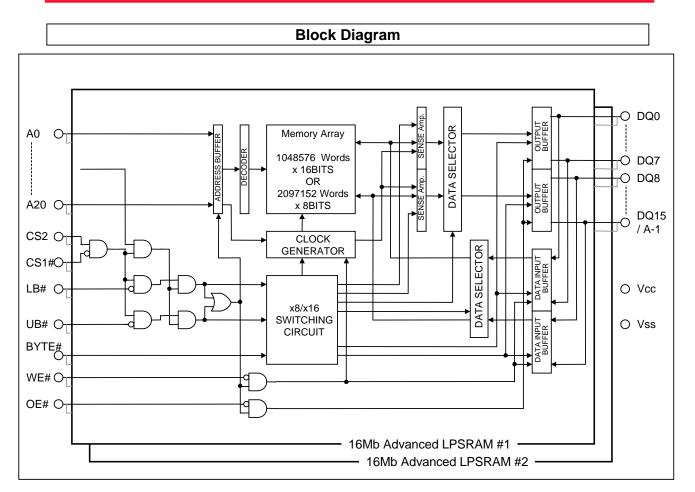
Type No.	Access time	Package
R1WV3216RSD-7S%	70 ns	350-mil 52-pin plastic μ - TSOP(II)
R1WV3216RSD-8S%	85 ns	(normal-bend type) (52PTG)
R1WV3216RBG-7S%	70 ns	7 Emmy 9 Emm f BCA 0 7Emm nitch 49holl
R1WV3216RBG-8S%	85 ns	7.5mmx8.5mm f-BGA 0.75mm pitch 48ball


% - Temperature version; see table below

%	Temperature Range
R	0 ~ +70 °C
I	-40 ~ +85 ⁰C

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 2 of 15

Pin Arrangement



Pin Description						
Pin name	Function					
A0 to A20	Address input (Word mode)					
A-1 to A20	Address input (Byte mode)					
DQ 0 to DQ15	Data input/output					
CS1# &CS2	Chip select					
WE#	Write enable					
OE#	Output enable					
LB#	Lower byte select					
UB#	Upper byte select					
Vcc	Power supply					
Vss	Ground					
BYTE#	Byte (x8 mode) enable input					
NC	Non connection					

Note: Byte Mode is supported by only 52-pin μ TSOP type.

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 3 of 15

Note: BYTE# pin is supported by only 52-pin μ TSOP type.

	Operating Table											
	0.00		1.5."			05.	DOOT	500.44	5045			
CS1#	CS2	BYTE#	LB#	UB#	WE#	OE#	DQ0-7	DQ8-14	DQ15	Operation		
н	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand by		
Х	L	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand by		
Х	Х	н	Н	Н	Х	Х	High-Z	High-Z	High-Z	Stand by		
L	Н	Н	L	Н	L	Х	Din	High-Z	High-Z	Write in lower byte		
L	Н	н	L	Н	Н	L	Dout	High-Z	High-Z	Read from lower byte		
L	Н	Х	Х	Х	Н	Н	High-Z	High-Z	High-Z	Output disable		
L	Н	н	Н	L	L	Х	High-Z	Din	Din	Write in upper byte		
L	Н	Н	Н	L	Н	L	High-Z	Dout	Dout	Read from upper byte		
L	Н	н	L	L	L	Х	Din	Din	Din	Write		
L	Н	н	L	L	Н	L	Dout	Dout	Dout	Read		
L	Н	L	L	L	L	Х	Din	High-Z	A-1	Write		
L	Н	L	L	L	Н	L	Dout	High-Z	A-1	Read		

Note 1. H:VIH L:VIL X: VIH or VIL

2. BYTE# pin is supported by only 52-pin µTSOP type. When apply BYTE# ="L", please assign LB#=UB#="L".

Absolu	ute Maxim	um Ratin	igs	
Parameter	Symbol		Unit	
Power supply voltage relative to Vss	Vcc		-0.5 to +4.6	V
Terminal voltage on any pin relation toVss	Vт	-0.5	* ¹ to Vcc+0.3* ²	V
Power dissipation	Рт	0.7		W
	Topr	R ver. *3	0 to +70	٥C
Operation temperature	Topr	l ver. * ³	-40 to +85	٥C
Storage temperature	Tstg	-65 to +150		٥C
Storage temperature renge under bigs	Tbias	R ver. *3	0 to +70	٥C
Storage temperature range under bias	TUIAS	l ver. * ³	-40 to +85	٥C

Note 1: -2.0V in case of AC (Pulse width \leq 30ns)

2: Maximum voltage is +4.6V

3: Temperature range depends on R/I-version. Please see table on page 2.

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 5 of 15

Recommended Operating Conditions									
Parameter	Тур.	Max.	Unit	Note					
Supply voltage		Vcc	2.7	3.0	3.6	V			
Supply voltage		Vss	Vss 0 0		0	V			
Input high voltage		Vін	2.4	-	Vcc+0.2	V			
Input low voltage		VIL	-0.2	-	0.4	V	1		
	R ver.	Те	0	-	+70	٥C	2		
Ambient temperature range	l ver.	Та	-40	-	+85	٥C	2		

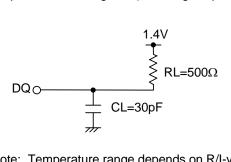
Note 1. –2.0V in case of AC (Pulse width \leq 30ns)

2. Ambient temperature range depends on R/I-version. Please see table on page 2.

	DC Characteristics									
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions [∗] 3				
Input leakage current	lu	-	-	1	μA	Vin=Vss to Vcc				
Output leakage current	ILo	-	-	1	μA	$\begin{array}{l} BYTE\#\geq\!\!Vcc\text{-}0.2V \text{ or}\\ BYTE\#\leq\!0.2V,\\ CS1\#=\!VIH \text{ or }CS2\!=\!\!VIL \text{ or}\\ OE\#=\!VIH \text{ or }WE\#\!=\!\!VIL \text{ or}\\ LB\#=\!\!UB\#\!=\!\!VIH, VI/O\!=\!\!Vss \text{ to }Vcc \end{array}$				
Average operating	ICC1	-	30 *1	55	mA	$\begin{array}{l} BYTE\# \geq Vcc\text{-}0.2V \text{ or}\\ BYTE\# \leq 0.2V,\\ Min. cycle, duty = 100\%\\ I \text{ I/O} = 0 \text{ mA, CS1\#} = VIL,\\ CS2 = VIH \text{ Others} = VIH \text{ / VIL} \end{array}$				
current	ICC2	-	3 * ¹	8	mA	$\begin{split} & \text{BYTE} \# \ge & \text{Vcc-0.2V or} \\ & \text{BYTE} \# \le & 0.2V, \\ & \text{Cycle time} = 1 \ \mu\text{s}, \ I \ \text{I/O} = 0 \ \text{mA}, \\ & \text{CS1} \# \le & 0.2V, \ \text{CS2} \ge & \text{Vcc-0.2V} \\ & \text{VIH} \ge & \text{Vcc-0.2V}, \ \text{VIL} \le & 0.2V, \\ & \text{duty} = & 100\% \end{split}$				
Standby current	lsв	-	0.1 * ¹	0.3	mA	BYTE# ≥Vcc-0.2V or BYTE#≤0.2V, CS2=VIL				
		-	4 * ¹	12	μA	~+25°C				
		-	7 * ²	24	μA	~+40°C BYTE#≤0.2V, (1) 0V≤CS2≤0.2V or (2) CS2≥Vcc-0.2V,				
Standby current	ISB1	-	-	50	μA	~+70°C (2) CS2≥VCC-0.2V, CS1# ≥Vcc-0.2V or (3)LB# =UB# ≥Vcc-0.2V, CS2≥Vcc-0.2V,				
		-	-	80	μA	~+85⁰C CS2≥vcc-0.2v, CS1# ≤0.2V Average value				
Output high voltage	Vон	2.4	-	-	V	BYTE# ≥Vcc-0.2V or BYTE#≤0.2V, IOH = -1mA				
Output Low voltage	Vol	-	-	0.4	V	BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V, IOL = 2mA				

Note 1. Typical parameter indicates the value for the center of distribution at Vcc=3.0V (Ta= 25°C), and not 100% tested.
2. Typical parameter indicates the value for the center of distribution at Vcc=3.0V (Ta= 40°C), and not 100% tested.
3. BYTE# pin is supported by only 52-pin µTSOP type.

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 6 of 15


Capacitance										
(Ta = +25°C, f =1MHz)										
Parameter Symbol Min. Typ. Max. Unit Test conditions No										
Input capacitance	nput capacitance C in 20 pF V in = 0V									
Input / output capacitance	С і/о	-	-	20	pF	V I/O = 0V	1			

Note 1. This parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Vcc=2.7 - 3.6V, Ta = $0 - 40 - 85^{\circ}C^{*}$)

- Input pulse levels: VIL= 0.4V,VIH=2.4V
- Input rise and fall time : 5ns
- Input and output timing reference levels : 1.4V
- Output load : See figures (Including scope and jig)

Note: Temperature range depends on R/I-version. Please see table on page 2.

Read Cycle

Deremeter	Sumbol	R1WV32	16R**-7S	R1WV32	16R**-8S	Unit	Notes
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit	NOIC3
Read cycle time	t RC	70	-	85	-	ns	
Address access time	t AA	-	70	-	85	ns	
Chip coloct cocces time	t ACS1	-	70	-	85	ns	
Chip select access time	t _{ACS2}	-	70	-	85	ns	
Output enable to output valid	t oe	-	35	-	45	ns	
Output hold from address change	tон	10	-	10	-	ns	
LB#,UB# access time	tва	-	70	-	85	ns	
Chip select to output in low-Z	t c∟z	10	-	10	-	ns	2,3
LB#,UB# enable to low-Z	t BLZ	5	-	5	-	ns	2,3
Output enable to output in low-Z	t olz	5	-	5	-	ns	2,3
Chip decalest to sutput in high 7	t cHz1	0	25	0	30	ns	1,2,3
Chip deselect to output in high-Z	tcHz2	0	25	0	30	ns	1,2,3
LB#,UB# disable to high-Z	t внz	0	25	0	30	ns	1,2,3
Output disable to output in high-Z	t онz	0	25	0	30	ns	1,2,3

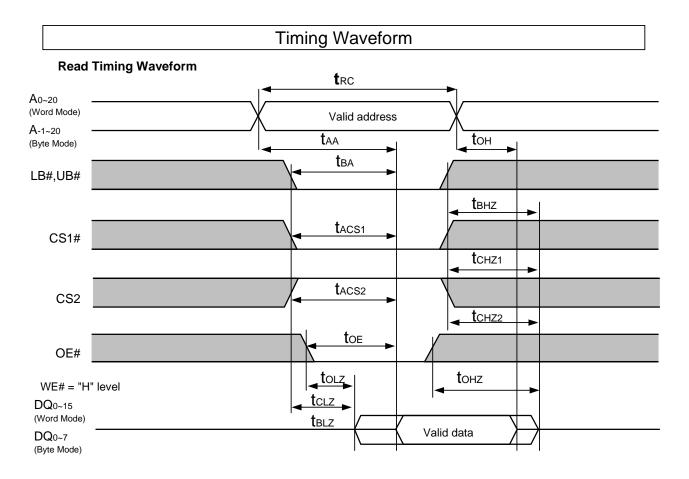
REJ03C0215-0300Z Rev.3.00 2008.03.03 page 8 of 15

Write Cycle

Parameter	Sumbol	R1WV32	16R**-7S	R1WV32	16R**-8S	Unit	Notes
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit	Notes
Write cycle time	t wc	70	-	85	-	ns	
Address valid to end of write	taw	65	-	70	-	ns	
Chip selection to end of write	t cw	65	-	70	-	ns	5
Write pulse width	twp	55	-	60	-	ns	4
LB#,UB# valid to end of write	tвw	65	-	70	-	ns	
Address setup time	t AS	0	-	0	-	ns	6
Write recovery time	t wr	0	-	0	-	ns	7
Data to write time overlap	t ow	35	-	40	-	ns	
Data hold from write time	tон	0	-	0	-	ns	
Output active from end of write	tow	5	-	5	-	ns	2
Output disable to output in high-Z	tонz	0	25	0	30	ns	1,2
Write to output in high-Z	t whz	0	25	0	30	ns	1,2

Byte Enable (supported by only 52-pin µTSOP)

Parameter	Symbol	R1WV32	16R**-7S	R1WV32	16R**-8S	Unit	Notes
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit	NOLES
Byte setup time	tвs	5	-	5	-	ms	
Byte recovery time	t BR	5	-	5	-	ms	

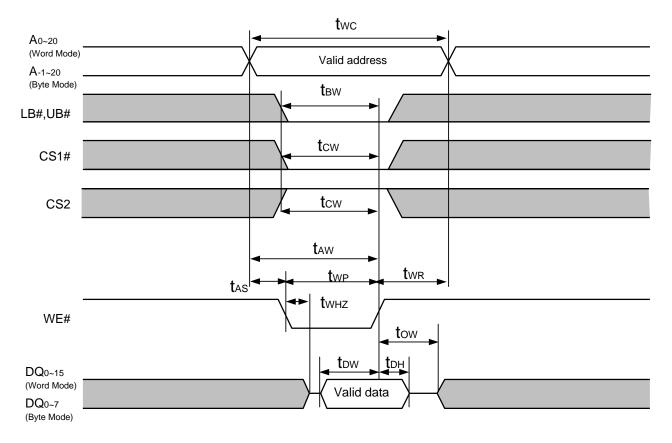

Note 1. tchz, tohz, twhz and tBHz are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- 3. AT any given temperature and voltage condition, tHz max is less than tLz min both for a given device and form device to device.
- 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#. A write begins at the latest transition among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low .

A write ends at the earliest transition among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. twp is measured from the beginning of write to the end of write.

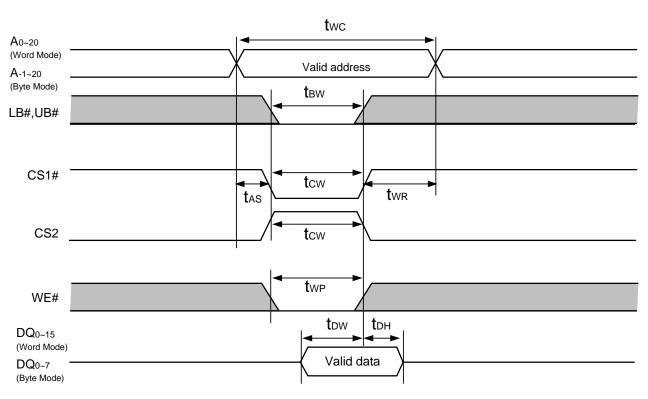
- 5. tcw is measured from the later of CS1# going low or CS2 going high to end of write.
- 6. tAs is measured the address valid to the beginning of write.
- 7. twR is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 9 of 15



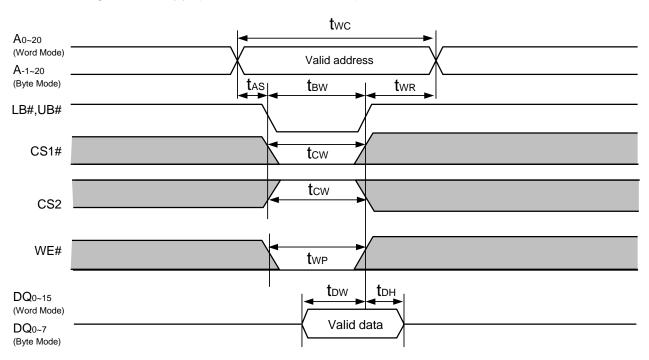
Note: Byte Mode is supported by only 52-pin $\mu TSOP$ type. BYTE# \geq Vcc-0.2V or BYTE# $\leq 0.2V$

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 10 of 15


Write Timing Waveform (1) (WE# CLOCK)

Note: Byte Mode is supported by only 52-pin μ TSOP type. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 11 of 15



Write Timing Waveform (2) (CS1#, CS2 CLOCK, OE#=VIH)

Note: Byte Mode is supported by only 52-pin $\mu TSOP$ type. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

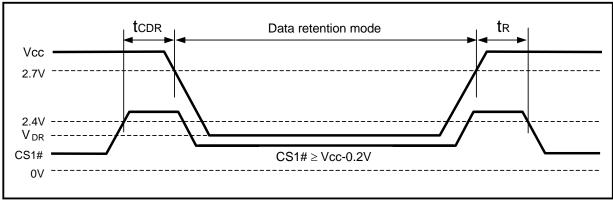
REJ03C0215-0300Z Rev.3.00 2008.03.03 page 12 of 15

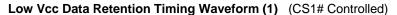
Write Timing Waveform (3) (LB#,UB# CLOCK, OE#=VIH)

Note: Byte Mode is supported by only 52-pin μ TSOP type. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

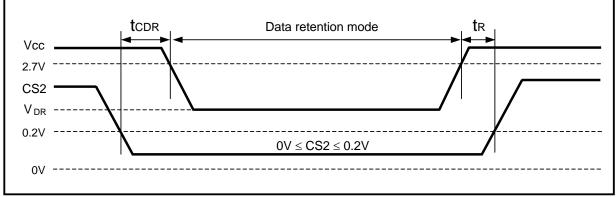
BYTE# Timing Waveform

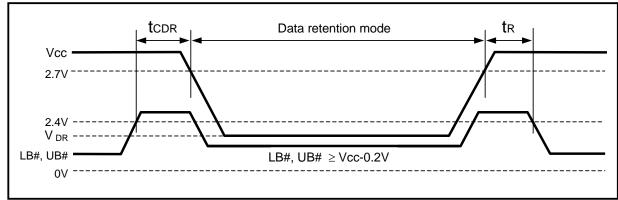
D	ata Rete	ention	Chara	cterist	ics		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions*3,4	
Vcc for data retention	Vdr	2.0	-	3.6	V	(1) 0V ≤ C (2) CS2 ≥ CS1# ≥ (3) LB# =L	: Vcc-0.2V or JB# ≥ Vcc-0.2V, Vcc-0.2V,
		-	4 *1	12	μA	~+25⁰C	Vcc=3.0V,Vin≥0V, BYTE# ≥ Vcc-0.2V or
		-	7 ^{*2}	24	μA	~+40°C	BYTE# ≤ 0.2V (1) 0V ≤ CS2 ≤ 0.2V or (2) CS2 ≥ Vcc-0.2V,
Data retention current	ICCDR	-	-	50	μA	~+70⁰C	(2) CS2 ≥ VCC-0.2V, CS1# ≥ Vcc-0.2V or (3) LB# =UB# ≥Vcc-0.2V,
		-	-	80	μA	~+85⁰C	CS2 ≥ Vcc-0.2V, CS1# ≤ 0.2V Average value
Chip deselect to data retention time	t CDR	0	-	-	ns	See retention waveform	
Operation recovery time	t R	5	-	-	ms		


. -. ... ~


Note 1. Typical parameter indicates the value for the center of distribution at Vcc=3.0V (Ta= 25°C) and not 100% tested. 2. Typical parameter indicates the value for the center of distribution at Vcc=3.0V (Ta= 40°C) and not 100% tested.

3. BYTE# pin is supported by only 52-pin µTSOP type.


4. Also CS2 controls address buffer, WE# buffer ,CS1# buffer ,OE# buffer ,LB# ,UB# buffer and Din buffer .If CS2 controls data retention mode, Vin levels (address, WE# ,OE#,CS1#,LB#,UB#,I/O) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 \ge Vcc-0.2V or 0V \le CS2 \le 0.2V. The other input levels (address, WE#, OE#, CS1#, LB#, UB#, I/O) can be in the high impedance state.



Note: BYTE# pin is supported by only 52-pin μ TSOP type. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

Low Vcc Data Retention Timing Waveform (2) (CS2 Controlled)

Note: BYTE# pin is supported by only 52-pin μ TSOP type. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

Low Vcc Data Retention Timing Waveform (3) (LB#, UB# Controlled)

Note: BYTE# pin is supported by only 52-pin μ TSOP type. BYTE# \geq Vcc-0.2V or BYTE# \leq 0.2V

REJ03C0215-0300Z Rev.3.00 2008.03.03 page 15 of 15

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: States

 Present States

 States

 Present State

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510