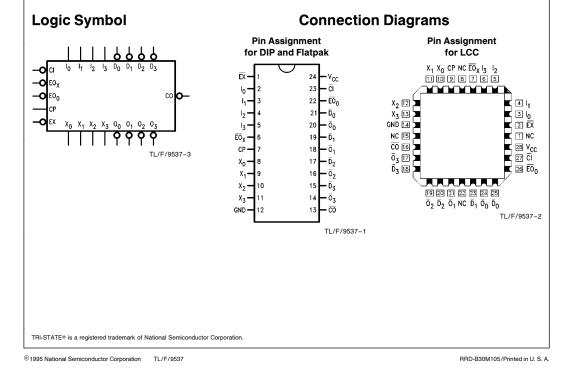


54F407 Data Access Register

General Description


The 'F407 Data Access Register (DAR) performs memory address arithmetic for RAM resident stack applications. It contains three 4-bit registers intended for Program Counter (R₀), Stack Pointer (R₁), and Operand Address (R₂). The 'F407 implements 16 instructions which allow either pre- or post-decrement/increment and register-to-register transfer in a single clock cycle. It is expandable in 4-bit increments and can operate at a 30 MHz microinstruction rate on a 16-bit word. The TRI-STATE® outputs are provided for bus-oriented applications. The 'F407 is fully compatible with all TTL families.

Features

- High-speed—greater than a 30 MHz microinstruction rate
- Three 4-bit registers
- 16 instructions for register manipulation
- Two separate output ports, one transparent
- Relative addressing capability
- TRI-STATE Outputs
- Optional pre- or post- arithmetic
- Expandable in multiples of four bits
- 24-pin slim package
- 9407 replacement

Military	Package Number	Package Description
54F407DM (Note 1)	J24A	24-Lead Ceramic Dual-In-Line
54F407SDM (Note 1)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
54F407FM (Note 1)	W24C	24-Lead Cerpack
54F407FM (Note 1)	E28A	28-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

54F407 Data Access Register

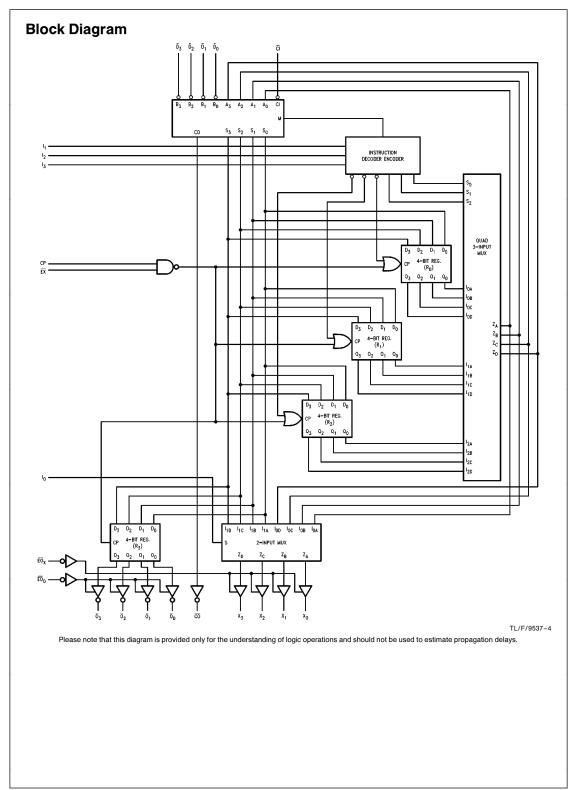
December 1994

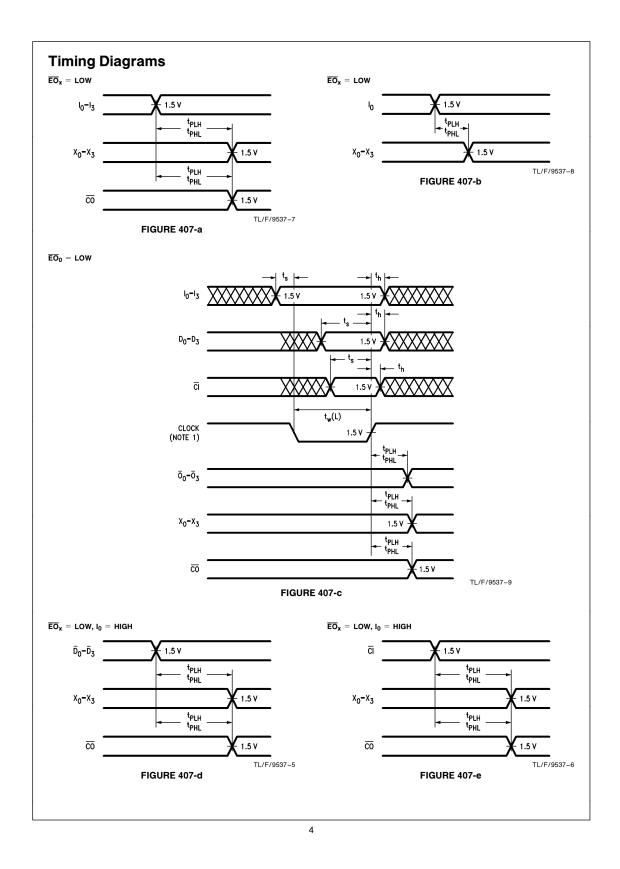
Unit Loading/Fan Out

			54F	
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
$\overline{D}_0 - \overline{D}_3$	Data Inputs (Active LOW)	1.0/0.67	20 µA/−0.4 mA	
I ₀ -I ₃	Instruction Word Inputs	1.0/0.67	20 µA/−0.4 mA	
CI	Carry Input (Active LOW)	1.0/0.67	20 µA/−0.4 mA	
CO	Carry Output (Active LOW)	20/13.3 (0.67)	0.4 mA/8 mA (4 mA)	
CP	Clock Input (L-H Edge-Triggered)	1.0/0.67	20 µA/−0.4 mA	
EX	Execute Input (Active LOW)	1.0/0.67	$20 \mu\text{A}/-0.4 \text{mA}$	
EOX	Address Output Enable Input (Active LOW)	1.0/0.67	$20 \mu\text{A}/-0.4 \text{mA}$	
EO ₀	Data Output Enable Input (Active LOW)	1.0/0.67	$20 \mu\text{A}/-0.4 \text{mA}$	
X ₀ -X ₃	Address Outputs	284 (100)/26.7 (13.3)	-5.7 mA (2 mA)/16 mA (8 mA)	
$\overline{O}_0 - \overline{O}_3$	Data Outputs (Active LOW)	284 (100)/26.7 (13.3)	-5.7 mA (2 mA)/16 mA (8 mA)	

Functional Description

The 'F407 contains a 4-bit slice of three Registers (R₀-R₂), a 4-bit Adder, a TRI-STATE Address Output Buffer (X₀-X₃) and a separate Output Register with TRI-STATE buffers ($\overline{O}_0-\overline{O}_3$), allowing output of the register contents on the data bus (refer to the Block Diagram). The DAR performs sixteen instructions, selected by l_0-l_3 , as listed in the Function Table.


The 'F407 operates on a single clock. CP and $\overline{\text{EX}}$ are inputs to a 2-input, active LOW AND gate. For normal operation $\overline{\text{EX}}$ is brought LOW while CP is HIGH. A microcycle starts as the clock goes HIGH. Data inputs $\overline{\mathbb{D}}_0-\overline{\mathbb{D}}_3$ are applied to the Adder as one of the operands. Three of the four instruction lines $(I_1-I_2-I_3)$ select which of the three registers, if any, is to be used as the other operand. The LOW-to-HIGH CP transition writes the result from the Adder into a register (R_0-R_2) and into the output register provided $\overline{\text{EX}}$ is LOW. If


the I₀ instruction input is HIGH, the multiplexer routes the result from the Adder to the TRI-STATE Buffer controlling the address bus (X₀-X₃), independent of $\overline{\text{EX}}$ and CP. The 'F407 is organized as a 4-bit register slice. The active LOW $\overline{\text{CI}}$ and $\overline{\text{CO}}$ lines allow ripple-carry expansion over longer word lengths.

In a typical application, the register utilization in the DAR may be as follows: ${\sf R}_0$ is the Program Counter (PC), ${\sf R}_1$ is the Stack Pointer (SP) for memory resident stacks and ${\sf R}_2$ contains the operand address. For an instruction Fetch, PC can be gated on the X-Bus while it is being incremented (i.e., D-Bus = 1). If the fetched instruction calls for an effective address for execution, which is displaced from the PC, the displacement can be added to the PC and loaded into ${\sf R}_2$ during the next microcycle.

				Function Table	
	Instru	iction		Combinatorial Function	Sequential Function Occurring
I ₃	l ₂	l ₁	l ₀	Available on the X-Bus	on the Next Rising CP Edge
L	L	L	L	R ₀	$ m R_0$ Plus D Plus Cl $ ightarrow$ $ m R_0$ and 0-Register
L	L	L	H	R ₀ Plus D Plus Cl	
L	L	н	L	R ₀	R_0 Plus D Plus Cl $\rightarrow R_1$ and 0-Register
L	L	н	H	R ₀ Plus D Plus Cl	
L	н	L	L	R ₀	R_0 Plus D Plus Cl $\rightarrow R_2$ and 0-Register
L	н	L	H	R ₀ Plus D Plus Cl	
L	H	H	L	R ₁	R_1 Plus D Plus Cl $\rightarrow R_1$ and 0-Register
L	H	H	H	R ₁ Plus D Plus Cl	
H	L	L	L	R ₂	D Plus Cl \rightarrow R ₂ and 0-Register
H	L	L	H	D Plus Cl	
H	L	H	L	R ₀	D Plus Cl \rightarrow R ₀ and 0-Register
H	L	H	H	D Plus Cl	
H H	H H	L	L	R ₂ R ₂ Plus D Plus Cl	$ m R_2$ Plus D Plus Cl $ ightarrow m R_2$ and 0-Register
H	H	H	L	R ₁	D Plus Cl \rightarrow R ₁ and 0-Register
H	H	H	H	D Plus Cl	

H = HIGH Voltage Level L = LOW Voltage Level

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE Output	-0.5V to $+5.5V$
Current Applied to Output in LOW State (Max)	twice the rated I _{OL} (mA)

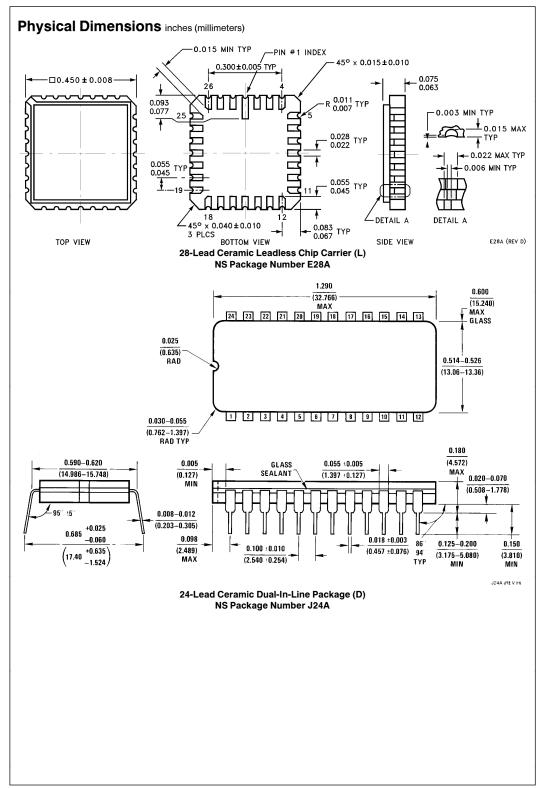
in LOW State (Max) twice the rated I_{OL} (mA) Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

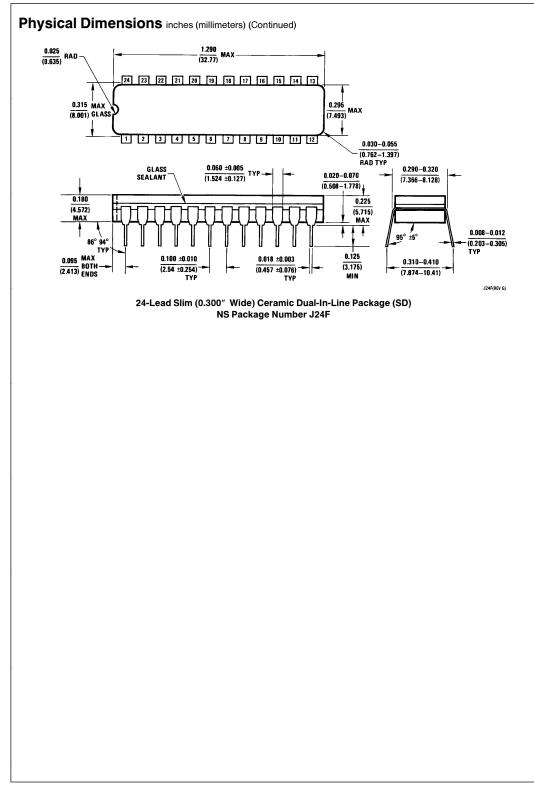
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

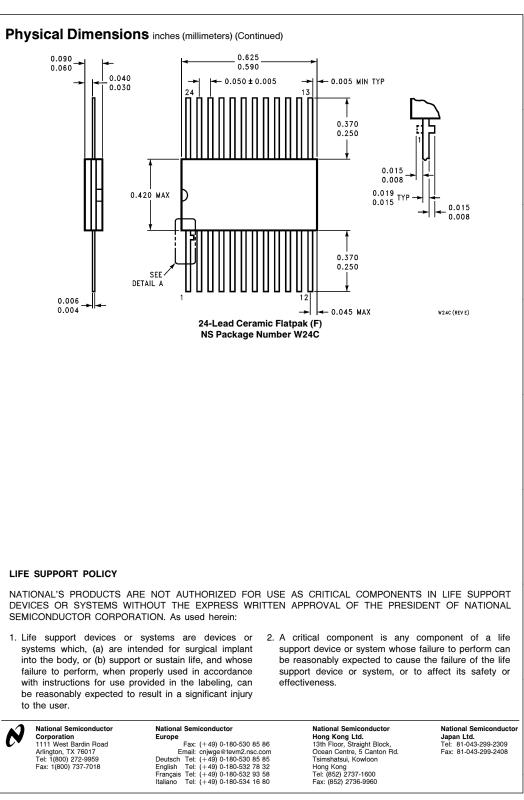
Recommended Operating Conditions

Free Air Ambient Temperature	
Military	


Supply Voltage Military -55°C to +125°C +4.5V to +5.5V


Symbol	Parame	tor	54F			Units	Vcc	Conditions	
Symbol	Farame	ter	Min	Тур	Max	Units	vcc	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.5	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC}	2.4 2.4			V	Min	$\begin{split} I_{OH} &= -0.4 \text{ mA } (\overline{CO}) \\ I_{OH} &= -2 \text{ mA } (X_0 - X_3, \overline{O}_0 - \overline{O}_3) \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 54F 10% V _{CC}	0.5 0.5			V	Min	$\begin{split} I_{OL} &= 4 \text{ mA } (\overline{CO}) \\ I_{OL} &= 8 \text{ mA } (X_0 - X_3, \overline{O}_0 - \overline{O}_3) \end{split}$	
I _{IH}	Input HIGH Current	54F			20.0	μA	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F			100	μA	Max	$V_{IN} = 7.0V$	
ICEX	Output HIGH Leakage Current	54F			250	μΑ	Max	$V_{OUT} = V_{CC}$	
IIL	Input LOW Current				-0.4	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Curr	ent			50	μA	Max	$V_{OUT} = 2.7V (X_0 - X_3, \overline{O}_0 - \overline{O}_3)$	
I _{OZL}	Output Leakage Curr	ent			-50	μA	Max	$V_{OUT} = 0.5V (X_0 - X_3, \overline{O}_0 - \overline{O}_3)$	
IOS	Output Short-Circuit (Current	-30		-100	mA	Max	$V_{OUT} = 0V$	
Icc	Power Supply Curren	t		90	145	mA	Max		

		5	4F		
Symbol	Parameter		_C = Mil 50 pF	Units	Fig. No.
		Min	Мах		
t _{PLH} t _{PHL}	Propagation Delay CP to O _n (Note 1)	7.0 4.0	24.0 15.0	ns	407-c
t _{PLH} t _{PHL}	Propagation Delay, I_0 LOW I_1-I_3 to X_0-X_3	7.5 8.0	21.0 25.0	ns	407-a
t _{PLH} t _{PHL}	Propagation Delay, I_0 HIGH I_1-I_3 to X_0-X_3	8.5 6.5	50.0 35.0	ns	407-a
t _{PLH} t _{PHL}	Propagation Delay, I ₀ LOW CP to X _n	7.0 8.5	24.0 28.0	ns	407-b
t _{PLH} t _{PHL}	Propagation Delay, I ₀ HIGH CP to X _n	16.0 11.5	43.0 36.5	ns	407-b
t _{PLH} t _{PHL}	Propagation Delay \overline{D}_n to X_n	6.5 3.0	29.0 20.5	ns	407-d
t _{PLH} t _{PHL}	Propagation Delay CI to X _n	4.0 4.5	22.0 14.0	ns	407-e
t _{PLH} t _{PHL}	Propagation Delay I ₀ to X _n	4.0 3.0	14.5 19.5	ns	407-b
t _{PLH} t _{PHL}	Propagation Delay CP to CO	9.0 6.5	33.0 38.0	ns	407-a
t _{PLH} t _{PHL}	Propagation Delay CI to CO	3.0 3.0	11.0 10.0	ns	407-е
t _{PLH} t _{PHL}	Propagation Delay \overline{D}_n to \overline{CO}	3.0 3.5	10.0 10.0	ns	407-d
t _{PLH} t _{PHL}	Propagation Delay $I_1 - I_3$ to \overline{CO}	8.0 6.0	23.0 32.5	ns	407-a
t _{PZH} t _{PZL}	Enable Time \overline{EO}_0 to \overline{O}_n or \overline{EO}_x to X_n	4.5 3.5	26.0 16.0	ns	


Note 1: The internal clock is generated from CP and EX. The internal Clock is HIGH if EX or CP is HIGH, LOW if EX and CP are LOW.

		5	4F		
Symbol	Parameter		c = Mil 50 pF	Units	Fig
		Min	Max		
t _{cw}	Clock Period	36.0		ns	
t _s (H) t _s (L)	Setup Time, HIGH or LOW I1-I3 to Negative-Going CP	4.5 4.5		20	407
t _h (H) t _h (L)	Hold Time, HIGH or LOW I1-I3 to Positive-Going CP	0 0		- ns	407
t _s (H) t _s (L)	Setup Time, HIGH or LOW \overline{D}_n or \overline{C}_1 to Negative-Going CP	18.5 18.5			
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n or Cl to Negative-Going Clock	0		ns	407
t _s (H) t _s (L)	Setup Time, HIGH or LOW Cl to Positive-Going CP	14.5 14.5		20	407
t _h (H) t _h (L)	Hold Time, HIGH or LOW Cl to Positive-Going CP	0 0		- ns	407
t _w (H) t _w (L)	Clock Pulse Width HIGH or LOW	8.5 8.5		ns	407
rdering I e device numl fined as follow	nformation per is used to form part of a simplified purs: 54F 4 ure Range Family	DT D M QB	— Special Varia QB = Milita	tions ıry grade device wi	th
rdering I e device numl fined as follow Temperatu 54F = N Device Typ Package C D = Ce SD = Sli	nformation ber is used to form part of a simplified purs: ure Range Family		– Special Varia QB = Milita envir proce – Temperature	tions Iry grade device wi onmental and burn əssing	th in
rdering I e device numl fined as follow Temperatu 54F = N Device Typ Package C D = Ce SD = Sli F = Fla	nformation ber is used to form part of a simplified purs: ure Range Family		– Special Varia QB = Milita envir proce – Temperature	tions Iry grade device wi onmental and burn essing Range	th in
rdering I e device numl fined as follow Temperatu 54F = N Device Typ Package C D = Ce SD = Sli F = Fla	nformation ber is used to form part of a simplified pures: <u>54F</u> 4 wilitary De code cramic DIP m Ceramic DIP atpak		– Special Varia QB = Milita envir proce – Temperature	tions Iry grade device wi onmental and burn essing Range	th in
rdering I e device numl fined as follow Temperatu 54F = N Device Typ Package C D = Ce SD = Sli F = Fla	nformation ber is used to form part of a simplified pures: <u>54F</u> 4 wilitary De code cramic DIP m Ceramic DIP atpak		– Special Varia QB = Milita envir proce – Temperature	tions Iry grade device wi onmental and burn essing Range	th in

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications