Military	Package Number	Package Description
54F407DM（Note 1）	J24A	24－Lead Ceramic Dual－In－Line
54F407SDM（Note 1）	J24F	24－Lead（0．300＂Wide）Ceramic Dual－In－Line
54F407FM（Note 1）	W24C	24－Lead Cerpack
54F407FM（Note 1）	E28A	28－Lead Ceramic Leadless Chip Carrier，Type C

Note 1：Military grade device with environmental and burn－in processing．Use suffix＝DMQB，FMQB and LMQB．

Logic Symbol

Pin Assignment for LCC
$\mathrm{X}_{1} \mathrm{X}_{0}$ CP NC $\overline{\mathrm{EO}} \mathrm{X}_{3} \mathrm{I}_{2}$四回回目 5

－Cachuncranch

$\bar{O}_{2} \overline{\mathrm{D}}_{2} \overline{\mathrm{O}}_{1}$ NC $\overline{\mathrm{D}}_{1} \overline{\mathrm{O}}_{0} \overline{\mathrm{D}}_{0}$
TL／F／9537－2
TL／F／9537－1

Unit Loading/Fan Out

Pin Names	Description	54F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$	Data Inputs (Active LOW)	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\mathrm{I}_{0}-\mathrm{I}_{3}$	Instruction Word Inputs	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{Cl}}$	Carry Input (Active LOW)	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{CO}}$	Carry Output (Active LOW)	20/13.3 (0.67)	$0.4 \mathrm{~mA} / 8 \mathrm{~mA}(4 \mathrm{~mA})$
CP	Clock Input (L-H Edge-Triggered)	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{EX}}$	Execute Input (Active LOW)	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{EO}}_{\mathrm{X}}$	Address Output Enable Input (Active LOW)	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{EO}} 0$	Data Output Enable Input (Active LOW)	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\mathrm{X}_{0}-\mathrm{X}_{3}$	Address Outputs	284 (100)/26.7 (13.3)	$-5.7 \mathrm{~mA}(2 \mathrm{~mA}) / 16 \mathrm{~mA}(8 \mathrm{~mA})$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Data Outputs (Active LOW)	284 (100)/26.7 (13.3)	$-5.7 \mathrm{~mA}(2 \mathrm{~mA}) / 16 \mathrm{~mA}(8 \mathrm{~mA})$

Functional Description

The 'F407 contains a 4-bit slice of three Registers ($\mathrm{R}_{0}-\mathrm{R}_{2}$), a 4-bit Adder, a TRI-STATE Address Output Buffer ($\mathrm{X}_{0}-\mathrm{X}_{3}$) and a separate Output Register with TRI-STATE buffers $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$, allowing output of the register contents on the data bus (refer to the Block Diagram). The DAR performs sixteen instructions, selected by $\mathrm{I}_{0}-\mathrm{I}_{3}$, as listed in the Function Table.
The 'F407 operates on a single clock. CP and EX are inputs to a 2 -input, active LOW AND gate. For normal operation EX is brought LOW while CP is HIGH. A microcycle starts as the clock goes HIGH. Data inputs $\bar{D}_{0}-\bar{D}_{3}$ are applied to the Adder as one of the operands. Three of the four instruction lines $\left(l_{1}-I_{2}-I_{3}\right)$ select which of the three registers, if any, is to be used as the other operand. The LOW-to-HIGH CP transition writes the result from the Adder into a register $\left(R_{0}-R_{2}\right)$ and into the output register provided EX is LOW. If
the I_{0} instruction input is HIGH, the multiplexer routes the result from the Adder to the TRI-STATE Buffer controlling the address bus ($\mathrm{X}_{0}-\mathrm{X}_{3}$), independent of EX and CP. The 'F407 is organized as a 4-bit register slice. The active LOW $\overline{\mathrm{Cl}}$ and $\overline{\mathrm{CO}}$ lines allow ripple-carry expansion over longer word lengths.
In a typical application, the register utilization in the DAR may be as follows: R_{0} is the Program Counter (PC), R_{1} is the Stack Pointer (SP) for memory resident stacks and R_{2} contains the operand address. For an instruction Fetch, PC can be gated on the X-Bus while it is being incremented (i.e., D-Bus $=1$). If the fetched instruction calls for an effective address for execution, which is displaced from the PC, the displacement can be added to the PC and loaded into R_{2} during the next microcycle.

Function Table					
Instruction				Combinatorial Function Available on the X-Bus	Sequential Function Occurring on the Next Rising CP Edge
I_{3}	I_{2}	I_{1}	I_{0}		
L	L	L	L	R_{0}	
L	L	L	H	R_{0} Plus D Plus CI	R_{0} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-Register
L	L	H	L	R_{0}	
L	L	H	H	R_{0} Plus D Plus CI	R_{0} Plus D Plus Cl $\rightarrow \mathrm{R}_{1}$ and 0-Register
L	H	L	L	R_{0}	R_{0} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
L	H	L	H	R_{0} Plus D Plus CI	R_{0} Plus D Plus CI $\rightarrow \mathrm{R}_{2}$ and 0-Register
L	H	H	L	R_{1}	R_{1} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-Register
L	H	H	H	R_{1} Plus D Plus Cl	R_{1} Plus D Plus Cl $\longrightarrow \mathrm{R}_{1}$ and 0-Register
H	L	L	L	R_{2}	D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
H	L	L	H	D Plus Cl	D Plus $\mathrm{Cl} \longrightarrow \mathrm{R}_{2}$ and 0-Register
H	L	H	L		
H	L	H	H	D Plus Cl	D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-Register
H	H	L	L	R_{2}	
H	H	L	H	R_{2} Plus D Plus Cl	R_{2} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
H	H	H	L	R_{1}	
H	H	H	H	D Plus Cl	D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-Register
$\begin{aligned} & -H=1 \\ & -=L \end{aligned}$	ge Le				

Block Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to
Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
$\begin{array}{lr}\text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \text { TRI-STATE }\end{array}$
TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may
be damaged or have its useful life impaired. Functional operation under
these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage Military
+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.5	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{array}{r} 2.4 \\ 2.4 \\ \hline \end{array}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}(\overline{\mathrm{CO}}) \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\overline{\mathrm{CO}}) \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \end{aligned}$
IIH	Input HIGH Current	54F			20.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	54F			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current	54F			250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
IIL	Input LOW Current				-0.4	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Cu				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$
lozL	Output Leakage Cur				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$
los	Output Short-Circuit	urrent	-30		-100	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Curre			90	145	mA	Max	

AC Electrical Characteristics

Symbol	Parameter			Units	Fig. No.
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{\mathrm{O}}_{\mathrm{n}}$ (Note 1)	$\begin{aligned} & 7.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 24.0 \\ 15.0 \\ \hline \end{array}$	ns	407-c
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, I_{0} LOW $I_{1}-I_{3} \text { to } x_{0}-x_{3}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.0 \\ 25.0 \\ \hline \end{array}$	ns	407-a
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{I}_{0} \mathrm{HIGH}$ $I_{1}-I_{3} \text { to } X_{0}-x_{3}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 50.0 \\ 35.0 \\ \hline \end{array}$	ns	407-a
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, I_{0} LOW CP to X_{n}	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 28.0 \end{aligned}$	ns	407-b
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\mathrm{I}_{0} \mathrm{HIGH}$ CP to X_{n}	$\begin{aligned} & 16.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 43.0 \\ 36.5 \\ \hline \end{array}$	ns	407-b
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\bar{D}_{\mathrm{n}} \text { to } X_{n}$	$\begin{aligned} & 6.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.0 \\ & 20.5 \\ & \hline \end{aligned}$	ns	407-d
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Cl to X_{n}	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 14.0 \end{aligned}$	ns	407-e
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & I_{0} \text { to } X_{n} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 19.5 \end{aligned}$	ns	407-b
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{\mathrm{CO}}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.0 \\ 38.0 \\ \hline \end{array}$	ns	407-a
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	407-e
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{D}_{n} to $\overline{\mathrm{CO}}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns	407-d
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{I}_{1}-\mathrm{I}_{3}$ to $\overline{\mathrm{CO}}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 32.5 \end{aligned}$	ns	407-a
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{EO}}_{0} \text { to } \overline{\mathrm{O}}_{\mathrm{n}} \text { or } \overline{\mathrm{EO}}_{\mathrm{x}} \text { to } \mathrm{X}_{n}$	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 26.0 \\ 16.0 \\ \hline \end{array}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Disable Time $\overline{\mathrm{EO}}_{0} \text { to } \overline{\mathrm{O}}_{\mathrm{n}} \text { or } \overline{\mathrm{EO}}_{x} \text { to } X_{n}$	$\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 18.0 \end{gathered}$	ns	

Note 1: The internal clock is generated from CP and $\overline{E X}$. The internal Clock is HIGH if $\overline{E X}$ or CP is HIGH, LOW if $\overline{\mathrm{EX}}$ and CP are LOW.

AC Electrical Characteristics (Continued)

Symbol	Parameter			Units	Fig. No.
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Max		
t_{cw}	Clock Period	36.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $I_{1}-I_{3}$ to Negative-Going CP	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	407-c
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $I_{1}-I_{3}$ to Positive-Going CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{D}}_{\mathrm{n}}$ or $\overline{\mathrm{C}}_{1}$ to Negative-Going CP	$\begin{aligned} & 18.5 \\ & 18.5 \end{aligned}$		ns	407-c
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW \bar{D}_{n} or $\overline{\mathrm{Cl}}$ to Negative-Going Clock	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{Cl}}$ to Positive-Going CP	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$		ns	407-c
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{Cl}}$ to Positive-Going CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		ns	407-c

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

54F407 Data Access Register

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

