

DECT Power Amplifier 1880 - 1930 MHz

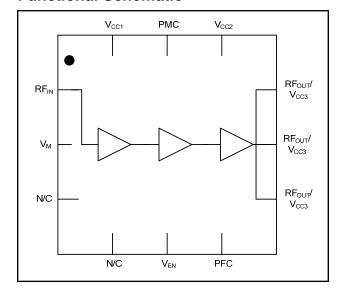
Rev. V3

Features

- Ideal for DECT Applications
- Power Set Pin for Adjustable Output Power High Power Mode: 25.5 dBm Low Power Mode: 17 dBm
- Power Gain: 25 dB Typical
- Voltage Supply Compensation
- Ramp Power Control
- Micro-Amp Shutdown Current
- Operates from 1.8 V to 3.6 V
- Lead-Free 3 mm 12-Lead PQFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MAAPSS0076 is a three stage power amplifier designed for Digitally Enhanced Cordless Telephone applications. The power amplifier is available in a lead-free 3 mm 12-lead PQFN plastic package.


The MAAPSS0076 features an integrated power enable pin (5) for accurate ramp control and a separate power mode pin (2) for current savings in a low power mode state. A voltage compensation circuit is also included for applications where the amplifier supply voltage is not regulated and is directly connected to the battery.

Ordering Information ¹

Part Number	Package
MAAPSS0076TR-3000	3000 piece reel
MAAPSS0076SMB	Sample Test Board (Includes 5 Samples)

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description	
1	RF _{IN}	RF Input	
2	V _M	Power Mode	
3	N/C	No Connection	
4	N/C	No Connection	
5	V _{EN}	Power Enable	
6	PFC	Power Flatness Control	
7	RF _{OUT} / V _{CC3}	RF Output, 3rd Stage Supply	
8	RF _{OUT} / V _{CC3}	RF Output, 3rd Stage Supply	
9	RF _{OUT} / V _{CC3}	RF Output, 3rd Stage Supply	
10	V _{CC2}	2nd Stage Supply	
11	PMC	Power Mode Control	
12	V _{CC1}	1st Stage Supply	
Pad ²	GND	RF & DC Ground	

2. The exposed pad centered on the package bottom must be connected to RF and DC ground.

1

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

DECT Power Amplifier 1880 - 1930 MHz

Rev. V3

Electrical Specifications: F = 1900 MHz, P_{IN} = 0 dBm, V_{CC} = 2.4 V, T_A = 25 °C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Input Return Loss	V _M = 0 V	dB	_	11	_
mpat retain 2000	$V_{M} = 2.5 \text{ V}$	dB	_	8	
	$V_{M} = 2.5 \text{ V}, \ V_{CC} = 3.0 \text{ V}$	dBm	_	26.5	27
P _{OUT} High Power Mode (HPM)	$V_{CC} = 2.4 \text{ V}$	dBm		25.5	_
1 001, riigir i ower wode (rii wi)	$V_{CC} = 2.0 \text{ V}$	dBm	23	24.0	_
	$V_{CC} = 1.8 \text{ V}$	dBm	_	23.5	_
P _{OUT} vs. Temperature, HPM	$T_A = 0$ °C to 50 °C, $V_{CC} = 2.4$ V	dB	_	0.8	_
P _{OUT} vs. V _{EN}	V _{EN} = 1.9 to 2.5 V	dB	_	1.2	_
Current, HPM	$V_{M} = 2.5 \text{ V}, V_{CC} = 3.0 \text{ V}$	mA	_	320	400
P _{OUT} , Low Power Mode (LPM)	$V_{M} = 0 \text{ V}, V_{CC} = 2.4 \text{ V}$	dBm	14	17	_
Current, LPM	$V_{M} = 0 \text{ V}, V_{CC} = 2.4 \text{ V}$	mA	_	140	200
Current, Shutdown	$V_{CC} = 3.0 \text{ V}, V_{EN} = 0.5 \text{ V}$	μΑ	_	1	10
	V_{EN} , V_{M} low	V	0	_	0.5
Control Pins	$V_{EN,}V_{M}$ high	V	2.0	_	2.5
Control i ins	V _M current	mA	_	_	1.0
	V _{EN} current	mA	_	_	3.0
Harmonics	$V_{M} = 2.5 \text{ V}, V_{CC} = 2.4 \text{ V}$ $2f_{o}$	dBc	_	-50	_
Tiamionics	3f _o	dBc	_	-60	_
Forward Isolation	V _{EN} = 0 V	dB		36	
Stability	+1.5 V < V_{CC} < +3.5 V, P_{OUT} = HPM & LPM, VSWR < 6:1 -20°C < T_A < +70°C, RBW = 3 MHz max. hold		All spurs < -60 dBc		
Turn on/off time	t _{on} : RF burst to (Avg Power – 1 dB)	μS	_	3	_
rum on/on time	t _{off} : (Avg Power – 1 dB) to RF off	μS	_	5	_

Absolute Maximum Ratings 3,4

Parameter	Absolute Maximum
Input Power	+ 5 dBm
Operating Supply Voltage	+4.0 Volts
Operating Control Voltage	+3.0 Volts
Operating Temperature	-20 °C to +85 °C
Channel Temperature	+150 °C
Storage Temperature	-40 °C to +150 °C

Exceeding any one or combination of these limits may cause permanent damage to this device.

Logic Table 5

V _{EN}	V _M	State
0	0	OFF
0	1	OFF
1	0	LPM
1	1	HPM

^{5.} 1 = +2.0 V to 2.5 V, 0 = 0 V to 0.5 V.

Operating the MAAPSS0076

The MAAPSS0076 is sensitive to electrostatic discharge (ESD). Use proper ESD control techniques when handling this device. To operate the MAAPSS0076, follow these steps. Ramp down or shut down in reverse order.

- 1. Apply V_{CC} (2.4 V).
- 2. Apply V_M (0 or 2.5 V).
- 3. Apply P_{IN} (-2 to 2 dBm).
- 4. Ramp V_{EN} from 0 to 2.5 V.

2

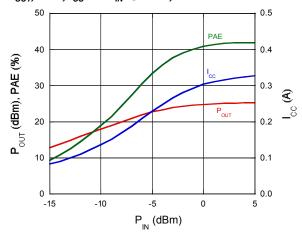
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology

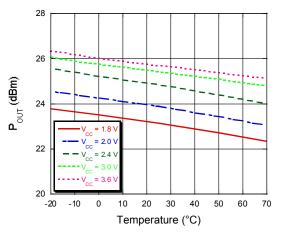
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

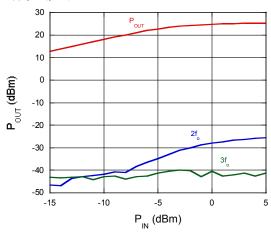
M/A-COM does not recommend sustained operation near these survivability limits.

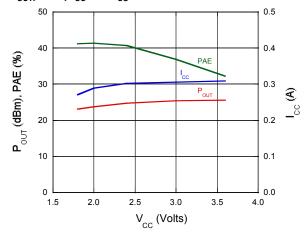


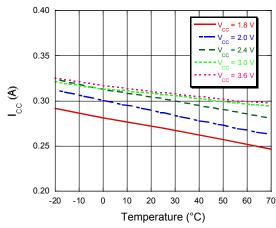
DECT Power Amplifier 1880 - 1930 MHz

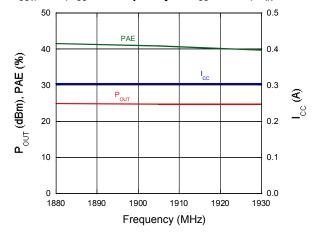

Rev. V3

High Power Mode Typical Performance, $V_M = 2.5 \text{ V}$ (using the supplied sample board BOM)


P_{OUT}, PAE, I_{CC} vs. P_{IN} @ 2.4 V, 1900 MHz


 P_{OUT} vs. Temperature @ 1900 MHz, $P_{IN} = 0$ dBm


Pout, 2fo, 3fo vs. PIN @ 2.4 V


POUT, PAE, ICC vs. VCC @ 1900 MHz

 I_{CC} vs. Temperature @ 1900 MHz, $P_{IN} = 0$ dBm

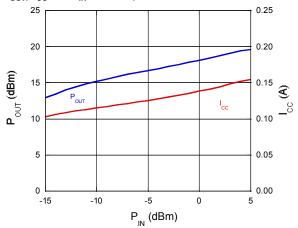
 P_{OUT} , PAE, I_{CC} vs. Frequency @ $V_{CC} = 2.4$ V, $P_{IN} = 0$ dBm

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

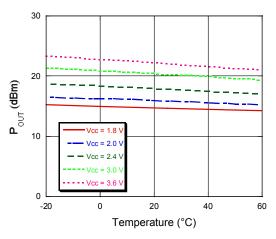
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

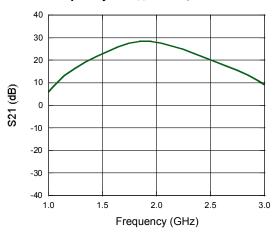
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

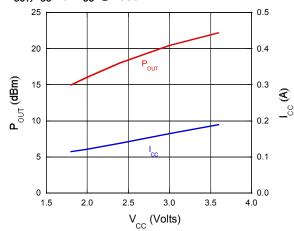


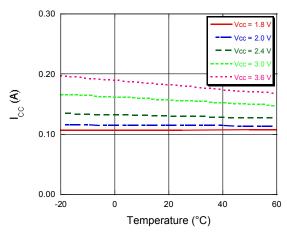
DECT Power Amplifier 1880 - 1930 MHz

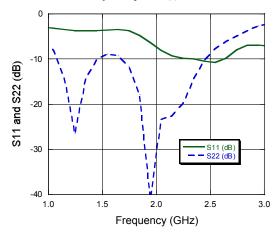

Rev. V3

Low Power Mode Typical Performance, $V_M = 0 V$ (using the supplied sample board BOM)


P_{OUT}, I_{CC} vs. P_{IN} @ 2.4 V, 1900 MHz


 P_{OUT} vs. Temperature @ 1900 MHz, $P_{IN} = 0$ dBm


S21 vs. Frequency @ $V_{CC} = 2.4 \text{ V}$, $V_M = V_{EN} = 2.5 \text{ V}$


Pout, Icc vs. Vcc @ 1900 MHz

I_{CC} vs. Temperature @ 1900 MHz, P_{IN} = 0 dBm

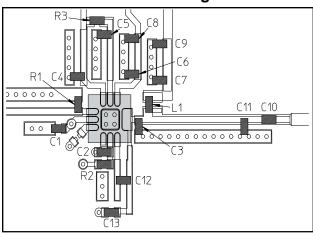
S11, S22 vs. Frequency @ $V_{CC} = 2.4 \text{ V}$, $V_M = V_{EN} = 2.5 \text{ V}$

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


DECT Power Amplifier 1880 - 1930 MHz

Rev. V3

Evaluation Board Schematic

Recommended PCB Configuration

MAAPSS0076 External Parts List

Designator	Value	Foot Print	Manufacturer	Part Number
C1, C4, C9	100 nF	0402	Murata	GRM155F51C104ZA01B
C2	22 nF	0402	Murata	GRM155R71C223KA01B
C3	4 pF	0402	Murata	GRM155C1H4R0CZ01B
C5, C6	47 pF	0402	Murata	GRM1555C1H470JZ01B
C7	1 nF	0402	Murata	GRM36X7R102K50
C8, C13	1 μF	0402	Murata	GRM36Y5V104Z016AQ
C10	100 pF	0402	Murata	GRM36COG101J050AQ
C11	2 pF	0402	Murata	GRM36COG020C05OAQ
C12	1.5 pF	0402	Murata	GRM1555C1H1R5CZ01D
L1	10 nH	0402	Coilcraft	0402CS-10NXJB
R1	249 Ω	0402	Panasonic	ERJ-2RKF2490X
R2	402 Ω	0402	Panasonic	ERJ-2RKF4020X
R3	2.15 ΚΩ	0402	Panasonic	ERJ-2RKF2151X

Transmission Line Dimensions, 0.20 mm thick FR4

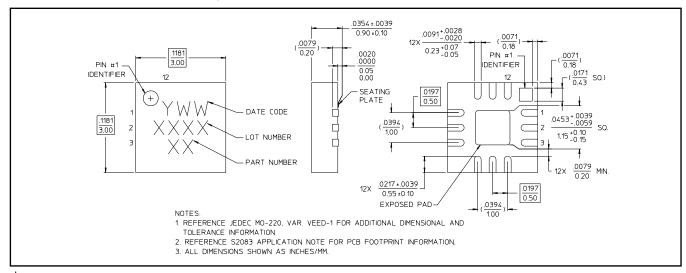
Designator	Length (mm)	Width (mm)
T1	3.76	0.35
T2	2.08	0.35
Т3	0.49	0.37
T4 ⁵	7.49	0.37
T5	3.05	0.35
T6 ⁶	2.29	0.35
T7	2.36	0.35

All dimensions from package edge to center of component (except as noted below).

- 5. From center of C3 to center of C11.
- 6. From center of C12 to center of C13.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

DECT Power Amplifier 1880 - 1930 MHz

Rev. V3

Lead-Free 3 mm 12-lead PQFN[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.