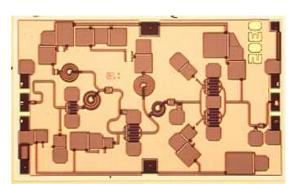


MAAPGM0044-DIE 903207 — Preliminary Information

Features


- ♦ 0.5 Watt Saturated Output Power Level
- ♦ Variable Drain Voltage (4-10V) Operation
- **♦ MSAG™ Process**
- Proven Manufacturability and Reliability
 - □ No Airbridges
 - □ Polyimide Scratch Protection
 - □ No Hydrogen Poisoning Susceptibility

Description

The MAAPGM0044-Die is a 3-stage power amplifier with on-chip bias networks. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Fabricated using M/A-COM's repeatable, high performance and highly reliable GaAs Multifunction Self-Aligned Gate (MSAG $^{\text{TM}}$) Process, each device is 100% RF tested on wafer to ensure performance compliance.

M/A-COM's MSAG[™] process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors, multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip, and polyimide scratch protection for ease of use with automated manufacturing processes. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Primary Applications

- ♦ 14.5-15.35 GHz Point-to-Point Radio
- ◆ SatCom
- Radio Location

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50 \Omega$, $V_{DD} = 8V$, $I_{DQ} \approx 210 \text{ mA}^2$, $P_{in} = 12 \text{ dBm}$

Parameter	Symbol	Typical	Units
Bandwidth	f	11.5-16.5	GHz
Output Power	POUT	27	dBm
Power Added Efficiency	PAE	32	%
1-dB Compression Point	P1dB	26	dBm
Small Signal Gain	G	19	dB
Input VSWR	VSWR	3.3:1	
Output VSWR	VSWR	2.5:1	
Gate Supply Current	I_{GG}	< 2	mA
Drain Supply Current	I _{DD}	< 300	mA
Output Third Order Intercept	ОТОІ	36	dBm
3 rd Order Intermodulation Distortion Single Carrier Level = 17 dBm	IM3	-12	dBm
5 th Order Intermodulation Distortion Single Carrier Level = 17 dBm	IM5	-34	dBm
Noise Figure	NF	8	dB
2 nd Harmonic	2f	-25	dBc
3 rd Harmonic	3f	-35	dBc

- 1. T_B = MMIC Base Temperature
- 2. Adjust V_{GG} between -2.4 and -1.5V to achieve I_{DQ} indicated.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

Visit www.macom.com for additional data sheets and product information.

MAAPGM0044-DIE 903207 — Preliminary Information

Maximum Operating Conditions ³

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	17.0	dBm
Drain Supply Voltage	$V_{ extsf{DD}}$	+12.0	V
Gate Supply Voltage	V_{GG}	-3.0	V
Quiescent Drain Current (No RF, 40% Idss)	I _{DQ}	330	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	2.6	W
Junction Temperature	T _J	180	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Die Attach Temperature		310	°C

^{3.} Operation outside of these ranges may reduce product reliability. Operation at other than the typical values may result in performance outside the guaranteed limits.

Recommended Operating Conditions

Characteristic	Symbol	Min	Тур	Max	Unit
Drain Supply Voltage	V_{DD}	4.0	8.0	10.0	V
Gate Supply Voltage	V_{GG}	-2.4	-2.0	-1.5	V
Input Power	P_{IN}		12.0	15.0	dBm
Junction Temperature	T_J			150	°C
Thermal Resistance	Θ_{JC}		31.3		°C/W
MMIC Base Temperature	Тв			Note 4	°C

^{4.} Maximum MMIC Base Temperature = 150°C — $\Theta_{JC}^* V_{DD} * I_{DQ}$

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} = -2 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage, typically 8.0 V.
- 3. Adjust V_{GG} to set I_{DQ} .
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn V_{GG} off last.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0044-DIE

903207 — Preliminary Information

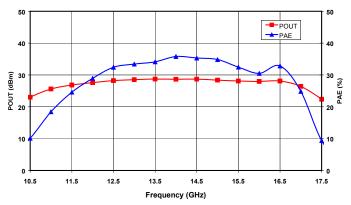


Figure 1. Output Power and Power Added Efficiency vs. Frequency at V_{DD} = 8V and P_{in} = 12 dBm.

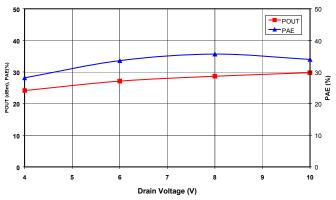


Figure 2. Saturated Output Power and Power Added Efficiency vs. Drain Voltage at fo = 14 GHz.

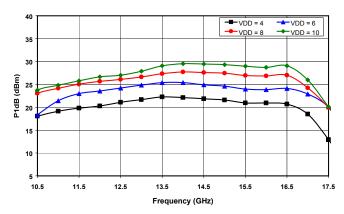


Figure 3. 1dB Compression Point vs. Drain Voltage

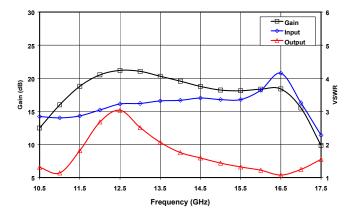
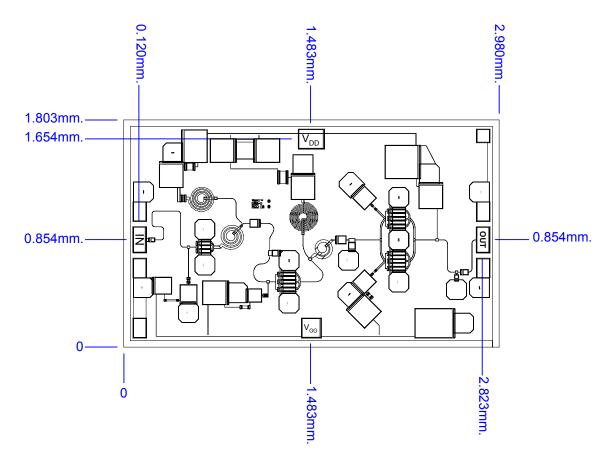


Figure 4. Small Signal Gain and VSWR vs. Frequency at VDD = 8V.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298



MAAPGM0044-DIE 903207 — Preliminary Information

Mechanical Information

Chip Size: 2.980 x 1.8030 x 0.075 mm (117 x 71 x 3 mils)

Chip edge to bond pad dimensions are shown to the center of the bond pad.

Figure 5. Die Layout

Bond Pad Dimensions

Pad	Size (μm)	Size (mils)
RF In and Out	100 x 200	4 x 8
DC Drain Supply Voltage VDD	200 x 150	8 x 6
DC Gate Supply Voltage VGG	150 x 150	6 x 6

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or

Visit www.macom.com for additional data sheets and product information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0044-DIE 903207 — Preliminary Information

Assembly and Bonding Diagram

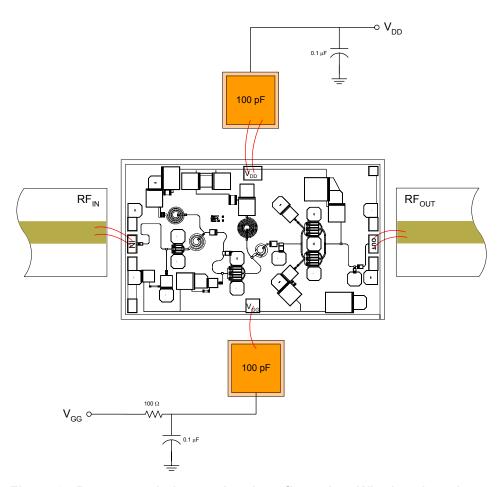


Figure 6. Recommended operational configuration. Wire bond as shown.

Assembly Instructions:

Die attach: Use AuSn (80/20) 1-mil. preform solder. Limit time @ 300 °C to less than 5 minutes.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

Visit www.macom.com for additional data sheets and product information.

information.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298