

# GaAs MMIC VSAT Power Amplifier 2.0 W 5.9 - 6.4 GHz

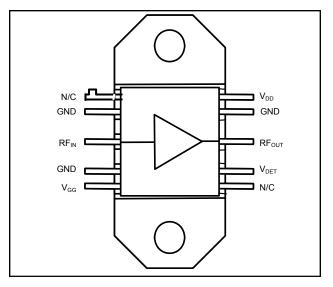
Rev. V5

#### **Features**

- High Linear Gain: 30 dB Typical
- High Saturated Output Power: +33 dBm Typ.
- High Power Added Efficiency: 26% Typ.
- 50 Ω Input/Output Broadband Matched
- Lead-Free Ceramic Bolt Down Package
- RoHS\* Compliant and 260°C Reflow Compatible

# **Description**

The AM42-0040 is a three-stage MMIC power amplifier in a lead-free, ceramic bolt down style hermetic package. The AM42-0040 employs an internally matched monolithic chip with internally decoupled Gate and Drain bias networks. The AM42-0040 is designed to be operated from a constant current Drain supply. By varying the Gate voltage, the saturated output performance of this device can be tailored for various applications.


The AM42-0040 is designed for use as an output stage or driver amplifier for C-band VSAT transmitter systems. This amplifier employs a fully monolithic and requires a minimum of external components.

The AM42-0040 is fabricated using a mature 0.5 micron GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

## **Ordering Information**

| Part Number | Package           |
|-------------|-------------------|
| AM42-0040   | Ceramic Bolt Down |

## **Functional Schematic**



# Pin Configuration

| Pin No. | Pin Name  | Description      |  |
|---------|-----------|------------------|--|
| 1       | N/C       | No Connection    |  |
| 2       | GND       | DC and RF Ground |  |
| 3       | RF In     | RF Input         |  |
| 4       | GND       | DC and RF Ground |  |
| 5       | $V_{GG}$  | Gate Supply      |  |
| 6       | N/C       | No Connection    |  |
| 7       | $V_{DET}$ | Detector         |  |
| 8       | RF Out    | RF Output        |  |
| 9       | GND       | DC and RF Ground |  |
| 10      | $V_{DD}$  | Drain Supply     |  |

Commitment to produce in volume is not guaranteed.

 <sup>\*</sup> Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400 • India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588

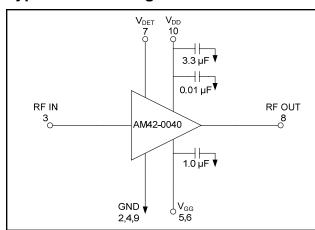
Visit www.macomtech.com for additional data sheets and product information.



# GaAs MMIC VSAT Power Amplifier 2.0 W 5.9 - 6.4 GHz

Rev. V5

# Electrical Specifications: $T_A = 25$ °C, $V_{DD} = +9$ V, $V_{GG}$ adjusted for $I_{DD} = 1050$ mA


| Parameter                                                            | Test Conditions                                                       | Units | Min. | Тур.  | Max.  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------|------|-------|-------|
| Linear Gain                                                          | P <sub>IN</sub> ≤ -10 dBm                                             | dB    | 27   | 30    | _     |
| Input VSWR                                                           | P <sub>IN</sub> ≤ -10 dBm                                             | Ratio | _    | 2.3:1 | 2.7:1 |
| Output VSWR                                                          | P <sub>IN</sub> ≤ -10 dBm                                             | Ratio | _    | 3.0:1 | _     |
| Output Power                                                         | $P_{IN}$ = +10 dBm, $I_{DD}$ = 1050 mA Typ.                           | dBm   | 31.7 | 33.0  | 34.5  |
| Output Power vs. Frequency                                           | $P_{IN}$ = +10 dBm, $I_{DD}$ = 1050 mA Typ.                           | dB    | _    | 1.0   | 1.5   |
| Output Power vs. Temperature (with respect to T <sub>A</sub> = 25°C) | $P_{IN}$ = +10 dBm, $I_{DD}$ = 1050 mA Typ.<br>$T_A$ = -40°C to +70°C | dB    | _    | ±0.4  | _     |
| Drain Bias Current                                                   | P <sub>IN</sub> = +10 dBm                                             | mA    | 900  | 1050  | 1100  |
| Gate Bias Voltage                                                    | $P_{IN}$ = +10 dBm, $I_{DD}$ = 1050 mA Typ.                           | V     | -2.4 | -1.2  | -0.4  |
| Gate Bias Current                                                    | $P_{IN}$ = +10 dBm, $I_{DD}$ = 1050 mA Typ.                           | mA    | _    | 5     | 20    |
| Thermal Resistance                                                   | 25°C Heat Sink                                                        | °C/W  | _    | 5.6   | _     |
| Second Harmonic                                                      | P <sub>IN</sub> = +10 dBm, I <sub>DD</sub> = 1050 mA Typ.             | dBc   | _    | -35   | _     |
| Third Harmonic                                                       | P <sub>IN</sub> = +10 dBm, I <sub>DD</sub> = 1050 mA Typ.             | dBc   | _    | -45   | _     |
| $V_{DET}$                                                            |                                                                       | V     | 2    | _     | _     |

# **Absolute Maximum Ratings** 1,2,3

| Parameter                         | Absolute Maximum |  |  |
|-----------------------------------|------------------|--|--|
| Input Power                       | +23 dBm          |  |  |
| $V_{DD}$                          | +12 Volts        |  |  |
| $V_{GG}$                          | -3 Volts         |  |  |
| V <sub>DD</sub> - V <sub>GG</sub> | +12 Volts        |  |  |
| I <sub>DD</sub>                   | 1700 mA          |  |  |
| Channel Temperature               | -40°C to +85°C   |  |  |
| Storage Temperature               | -65°C to +150°C  |  |  |

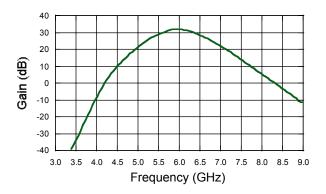
- 1. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 2. M/A-COM Technology does not recommend sustained operation near these survivability limits.
- 3. Case Temperature (TC) = +25°C

# **Typical Bias Configuration**<sup>4,5,6,7,8</sup>

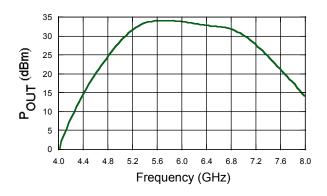


- 4. Nominal bias is obtained by first connecting -2.4 volts to pin 5 (VGG), followed by connection +9 volts to pin 10 (VDD). Note sequence. Adjust VGG for a drain current of 1050 mA
- 5. RF ground and thermal interface is the flange (case bottom). Adequate heat sinking is required.
- 6. No DC bias voltage appears at the RF ports.
- For optimum IP3 performance, the VDD bypass capacitors should be placed within 0.5 inches of the VDD leads.
- 8. Resistor and capacitors surrounding the amplifier are suggestions and not included as part of the AM42-0040.
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MIA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are
- typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588 India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.

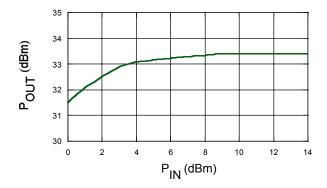
Commitment to produce in volume is not guaranteed.



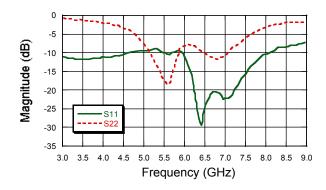

# GaAs MMIC VSAT Power Amplifier 2.0 W 5.9 - 6.4 GHz


Rev. V5

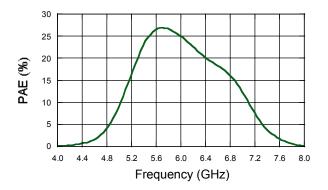
# Typical Performance Curves @ +25°C


#### Linear Gain vs. Frequency

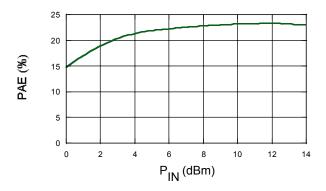



#### Output Power vs. Frequency @ $P_{IN} = +10 \text{ dBm}$




#### Output Power vs. Input Power @ 6.15 GHz




#### Input and Output Return Loss vs. Frequency



PAE vs. Frequency @ P<sub>IN</sub> = +10 dBm



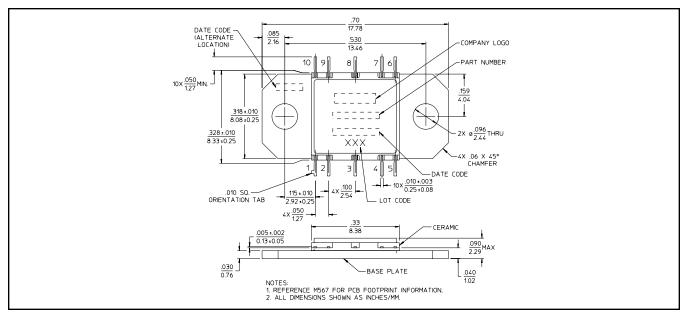
## PAE vs. Input Power @ 6.15 GHz



<sup>3</sup> 

North America Tel: 800.366.2266
India Tel: +91.80.43537383
Ch

Europe Tel: +353.21.244.6400
China Tel: +86.21.2407.1588


Visit www.macomtech.com for additional data sheets and product information.



# GaAs MMIC VSAT Power Amplifier 2.0 W 5.9 - 6.4 GHz

Rev. V5

## Lead-Free CR-15<sup>†</sup>



<sup>&</sup>lt;sup>†</sup> Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

# **Handling Procedures**

Please observe the following precautions to avoid damage:

## **Static Sensitivity**

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Visit www.macomtech.com for additional data sheets and product information.

North America Tel: 800.366.2266
India Tel: +91.80.43537383
Europe Tel: +353.21.244.6400
China Tel: +86.21.2407.1588