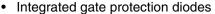


Vishay Semiconductors

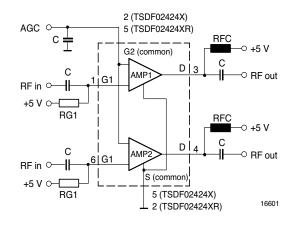

Dual - MOSMIC®- two AGC Amplifiers for TV-Tuner Prestage with 5 V Supply Voltage

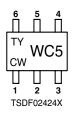
Comments

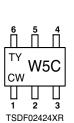
MOSMIC - MOS Monolithic Integrated Circuit

Features

- Two AGC amplifiers in a single package
- Easy Gate 1 switch-off with PNP switching transistors inside PLL




- · Low noise figure
- High gain, medium forward transadmittance (24 mS typ.)
- Biasing network on chip
- Improved cross modulation at gain reduction
- High AGC-range with less steep slope
- SMD package, reverse pinning possible
- · Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC


Applications

Low noise gain controlled input stages in UHF-and VHF- tuner with 5 V supply voltage.

Typical Application

Electrostatic sensitive device.

Observe precautions for handling.

6602

Mechanical Data

Typ: TSDF02424X

Case: SOT-363 Plastic case Weight: approx. 6.0 mg

Pinning: 1 = Gate 1 (amplifier 1), 2 = Gate 2, 3 = Drain (amplifier 1), 4 = Drain (amplifier 2),

5 = Source, 6 = Gate1 (amplifier 2)

Typ: TSDF02424XR

Case: SOT-363 Plastic case Weight: approx. 6.0 mg

Pinning: 1 = Gate 1 (amplifier 1), 2 = Source, 3 = Drain (amplifier 1), 4 = Drain (amplifier 2),

5 = Gate 2, 6 = Gate 1 (amplifier 2)

V - Vishay

Y - Year, is variable for digit from 0 to 9

(e.g. 0 = 2000, 1 = 2001)

CW - Calendar Week, is variable for

number from 01 to 52

Number of Calendar Week is always indicating

place of pin 1

Parts Table

Part	Marking	Package
TSDF02424X	WC5	SOT-363
TSDF02424XR	W5C	SOT-363R

Document Number 85088 www.vishay.com
Rev. 1.3, 05-Sep-08

TSDF02424X/TSDF02424XR

Vishay Semiconductors

All of following data and characteristics are valid for operating either amplifier 1 (pin 1, 3, 2, 5) or amplifier 2 (pin 6, 4, 2, 5)

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit	
Drain - source voltage		V _{DS}	8	V	
Drain current		I _D	25	mA	
Gate 1/Gate 2 - source peak current		± I _{G1/G2SM}	10	mA	
Gate 1/Gate 2 - source voltage		+ V _{G1/± G2SM}	6	V	
		- V _{G1SM}	1.5	V	
Total power dissipation	T _{amb} ≤ 60 °C	P _{tot}	160	mW	
Channel temperature		T _{Ch}	150	°C	
Storage temperature range		T _{stg}	- 55 to + 150	°C	

Maximum Thermal Resistance

Parameter	Test condition	Symbol	Value	Unit
Channel ambient	1)	R _{thChA}	450	K/W

 $^{^{1)}}$ on glass fibre printed board (25 x 20 x 1.5) mm^3 plated with 35 μm Cu

Electrical DC Characteristics

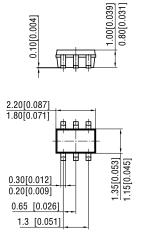
 T_{amb} = 25 °C, unless otherwise specified

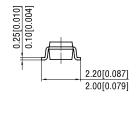
Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Drain - source breakdown voltage	$I_D = 10 \mu A, V_{G1S} = V_{G2S} = 0$	V _{(BR)DSS}	12			V
Gate 1 - source breakdown voltage	$+ I_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	+ V _{(BR)G1SS}	7		10	V
Gate 2 - source breakdown voltage	$\pm I_{G2S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	± V _{(BR)G2SS}	7		10	V
Gate 1 - source leakage current	$+ V_{G1S} = 5 V, V_{G2S} = V_{DS} = 0$	+ I _{G1SS}			20	nA
Gate 2 - source leakage current	$\pm V_{G2S} = 5 \text{ V}, V_{G1S} = V_{DS} = 0$	± I _{G2SS}			20	nA
Drain - source operating current	$V_{DS} = V_{RG1} = 5 \text{ V}, V_{G2S} = 4 \text{ V},$ $R_{G1} = 56 \text{ k}\Omega$	I _{DSO}	8	13	18	mA
Gate 1 - source cut-off voltage	$V_{DS} = 5 \text{ V}, V_{G2S} = 4, I_{D} = 20 \mu\text{A}$	V _{G1S(OFF)}	0.5		1.3	V
Gate 2 - source cut-off voltage	$V_{DS} = V_{RG1} = 5 \text{ V}, R_{G1} = 56 \text{ k}\Omega,$ $I_D = 20 \mu\text{A}$	V _{G2S(OFF)}	0.8	1.0	1.4	V

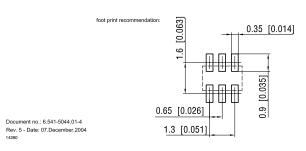
Remark on improving intermodulation behavior:

By setting R_{G1} smaller than 56 $k\Omega$, typical value of I_{DSO} will raise and improved intermodulation behavior will be performed.

Vishay Semiconductors


Electrical AC Characteristics


 T_{amb} = 25 °C, unless otherwise specified


 $V_{DS} = V_{RG1} = 5 \text{ V}, V_{G2S} = 4 \text{ V}, R_{G1} = 56 \text{ k}\Omega, I_D = I_{DSO,} \text{ f} = 1 \text{ MHz}$

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward transadmittance		y _{21s}	20	24	28	mS
Gate 1 input capacitance		C _{issg1}		1.7	2.1	pF
Feedback capacitance		C _{rss}		15	30	fF
Output capacitance		C _{oss}		0.9		pF
Power gain	$G_S = 2 \text{ mS}, G_L = 0.5 \text{ mS},$ f = 200 MHz	G _{ps}		26		dB
	$G_S = 3.3 \text{ mS}, G_L = 1 \text{ mS},$ f = 800 MHz	G _{ps}	16.5	21		dB
AGC range	$V_{DS} = 5 \text{ V}, V_{G2S} = 1 \text{ to 4 V},$ f = 800 MHz	ΔG_{ps}		45		dB
Noise figure	$G_S = 2 \text{ mS}, G_L = 0.5 \text{ mS},$ f = 200 MHz	F		1		dB
	$G_S = 3.3 \text{ mS}, G_L = 1 \text{ mS},$ f = 800 MHz	F		1.3		dB
Cross modulation	Input level for k = 1 % @ 0 dB AGC $f_w = 50$ MHz, $f_{unw} = 60$ MHz	X _{mod}	90			dBμV
	Input level for k = 1 % @ 40 dB AGC f_w = 50 MHz, f_{unw} = 60 MHz	X _{mod}	100	105		dBμV

Package Dimensions in mm (Inches)

Document Number 85088 www.vishay.com
Rev. 1.3, 05-Sep-08 3

TSDF02424X/TSDF02424XR

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

www.vishay.com Document Number 85088

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com