FET BIAS CONTROLLER

DEVICE DESCRIPTION

The ZNBG series of devices are designed to meet the bias requirements of GaAs and HEMT FETs commonly used in satellite receiver LNBs, PMR, cellular telephones etc. with a minimum of external components.

With the addition of two capacitors and a resistor the devices provide drain voltage and current control for 2 external grounded source FETs, generating the regulated negative rail required for FET gate biasing whilst operating from a single supply. This negative bias, at -3 volts, can also be used to supply other external circuits.

The ZNBG2000/1 contains two bias stages. A single resistor allows FET drain current to be set to the desired level. The series also offers the choice of drain voltage to be set for the FETs, the ZNBG2000 gives 2.2 volts drain whilst the ZNBG2001 gives 2 volts.

These devices are unconditionally stable over the full working temperature with the FETs in place, subject to the inclusion of the recommended gate and drain capacitors. These ensure RF stability and minimal injected noise.

FEATURES

- Provides bias for GaAs and HEMT FETs
- Drives up to two FETs
- Dynamic FET protection
- · Drain current set by external resistor
- Regulated negative rail generator requires only 2
 external capacitors
- Choice in drain voltage
- Wide supply voltage range
- MSOP surface mount package

It is possible to use less than the devices full complement of FET bias controls, unused drain and gate connections can be left open circuit without affecting operation of the remaining bias circuits.

In order to protect the external FETs the circuits have been designed to ensure that, under any conditions including power up/down transients, the gate drive from the bias circuits cannot exceed the range -3.5V to 0.7V. Furthermore if the negative rail experiences a fault condition, such as overload or short circuit, the drain supply to the FETs will shut down avoiding excessive current flow.

The ZNBG2000/1 are available in MSOP10 packages for the minimum in devices size. Device operating temperature is -40 to 80°C to suit a wide range of environmental conditions.

APPLICATIONS

- Satellite receiver LNBs
- Private mobile radio (PMR)
- Single in single out C Band LNB
- Cellular telephones

ISSUE 1 - AUGUST 2001

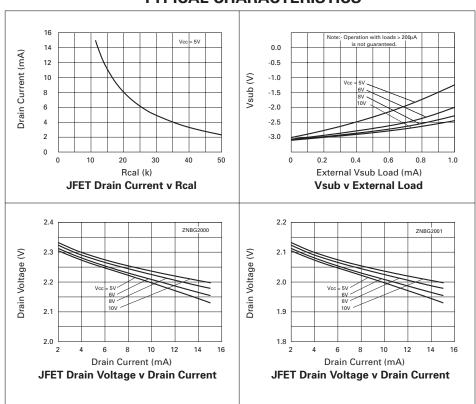
1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	-0.6V to 15V	Output Current	100mA
Supply Current	100mA	Operating Temperature	-40 to 80°C
Drain Current (per FET)	0 to 15mA	Storage Temperature	-40 to 85°C
(set by R_{CAL1} and R_{CAL2})		Power Dissipation (T _{amb 25°} C) MSOP10	500mW

ELECTRICAL CHARACTERISTICS TEST CONDITIONS (Unless otherwise

SYMBOL	PARAMETER	CONDITIONS	LIMITS			UNITS
			Min	Тур	Max	
V _{cc}	Supply Voltage		5		12	V
I _{cc}	Supply Current	I_{D1} and $I_{D2=0}$ I_{D1} and $I_{D2}=10mA$		5 24	10 30	mA mA
V _{SUB}	Substrate Voltage (Internally generated)	I _{SUB} = 0 I _{SUB} = -200μA	-3.5	-2.8	-2 -2	V V
E _{ND} E _{NG}	Output Noise Drain Voltage Gate Voltage	C_{G} =4.7nF, C_{D} =10nF C_{G} =4.7nF, C_{D} =10nF			0.02 0.005	Vpkpk Vpkpk
f _O	Oscillator Freq.		150	330	800	kHz
DRAIN	CHARACTERISTIC	CS				
I _{DO}	Output Current Range	Set by R _{CAL1}	0		15	mA
I _D	Current		8	10	12	mA
	Current Change					
$\Delta I_{\rm DV}$	with V _{cc}	V _{CC} =5 to 12V		0.5		%/V
$\Delta I_{\rm DT}$	with T _j	T _j =-40 to +80°C		0.05		%/°C
V _D	Voltage ZNBG2000 ZNBG2001	I_{D1} and I_{D2} =10mA	2 1.8	2.2	2.4 2.2	V V
	Voltage Change					
ΔV_{DV}	with V _{cc}	V _{CC} = 5 to 12V		0.5		%/V
ΔV_{DT}	with T _j	$T_{j} = -40 \text{ to } +80^{\circ}\text{C}$		50		ppm
GATE (CHARACTERISTIC	S				
I _{GO}	Output Current Range		-40		2000	μA
	Output Voltage					
V _{OL}	Output Low	I_{D1} and I_{D2} =12mA I_{G1} and I_{G2} =0	-3.5		-2	v
		$I_{D1} and I_{D2} = 12mA$ $I_{G1} and I_{G2} = -10 \mu A$	-3.5		-2	v
V _{он}	Output High	I_{D1} and I_{D2} = 8mA I_{G1} and I_{G2} = 0	0.4		1	v

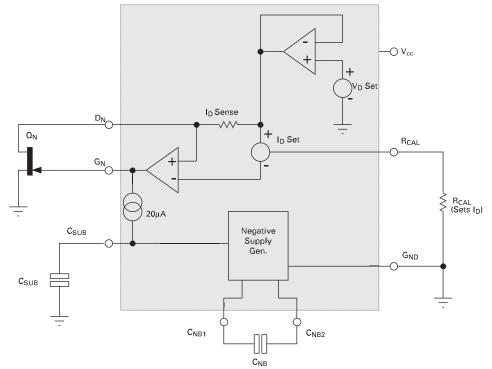

Notes:

1. The negative bias voltages specified are generated on-chip using an internal oscillator. Two external capacitors, C_{NB} and C_{SUB}, of 47nF are required for this purpose.

2. The characteristics are measured using an external reference resistors R_{CAL1} of value 16k Ω wired from pin R_{CAL1} to ground.

Noise voltage is not measured in production.
 Noise voltage measurement is made with FETs and gate and drain capacitors in place on all outputs. C_G, 4.7nF, are connected between gate outputs and

3


TYPICAL CHARACTERISTICS

FUNCTIONAL DIAGRAM

FUNCTIONAL

4

DESCRIPTION

The ZNBG devices provide all the bias requirements for external FETs, including the generation of the negative supply required for gate biasing, from the single supply voltage.

The diagram above shows a single stage from the ZNBG series. The ZNBG2000/1 contains 2 such stages.

The drain voltage of the external FET Q_N is set by the ZNBG device to its normal operating voltage. This is determined by the on board V_D Set reference, for the ZNBG2000 this is nominally 2.2 volts whilst the ZNBG2001 provides nominally 2 volts.

The drain current taken by the FET is monitored by the low value resistor I_D Sense. The amplifier driving the gate of the FET adjusts the gate voltage of Q_N so that the drain current taken matches the current called for by an external resistor R_{CAL} . Both ZNBG devices have the facility to program different drain currents into selected FETs.

Since the FET is a depletion mode transistor, it is usually necessary to drive its gate negative with respect to ground to obtain the required drain current. To provide this capability powered from a single positive supply, the device includes a low current negative supply generator. This generator uses an internal oscillator and two external capacitors, C_{NB} and C_{SUB} .

APPLICATIONS TYPICAL APPLICATION CIRCUIT · L1 * C2 C_D 10nF Q1 V_{CC} -0 ZNBG * L2 G_N C3 C_G 4.7nF D_N G_{ND} * Stripline Elements R_{CAL} C_{NB1} -00-C_{NB2} C_{SUB} C_{NB} 47nF C_{SUB} R_{CAL1} 16k

INFORMATION

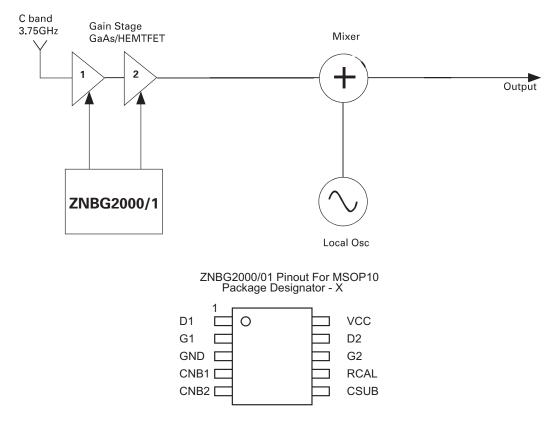
The above is a partial application circuit for the ZNBG series showing all external components required for appropriate biasing. The bias circuits are unconditionally stable over the full temperature range with the associated FETs and gate and drain capacitors in circuit.

Capacitors C_D and C_G ensure that residual power supply and substrate generator noise is not allowed to affect other external circuits which may be sensitive to RF interference. They also serve to suppress any potential RF feedthrough between stages via the ZNBG device. These capacitors are required for all stages used. Values of 10nF and 4.7nF respectively are recommended however this is design dependent and any value between 1nF and 100nF could be used.

The capacitors C_{NB} and C_{SUB} are an integral part of the ZNBGs negative supply generator. The negative bias voltage is generated on-chip using an internal oscillator. The required value of capacitors C_{NB} and C_{SUB} is 47nF. This generator produces a low current supply of approximately -3 volts. Although this generator is intended purely to bias the external FETs, it can be used to power other external circuits via the C_{SUB} pin. Resistor R_{CAL1} sets the drain current at which all external FETs are operated. If any bias control circuit is not required, its related drain and gate connections may be left open circuit without affecting the operation of the remaining bias circuits. If all FETs associated with a current setting resistor are omitted, the particular R_{CAL} should still be included. The supply current can be reduced, if required, by using a high value R_{CAL} resistor (e.g. 470k).

The ZNBG devices have been designed to protect the external FETs from adverse operating conditions. With a JFET connected to any bias circuit, the gate output voltage of the bias circuit can not exceed the range -3.5V to 0.7V, under any conditions including powerup and powerdown transients. Should the negative bias generator be shorted or overloaded so that the drain current of the external FETs can no longer be controlled, the drain supply to FETs is shut down to avoid damage to the FETs by excessive drain current.

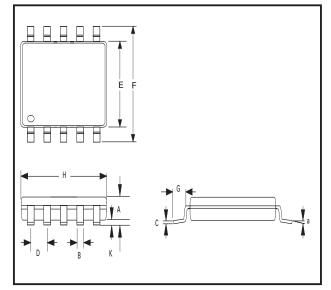
The following diagram show the ZNBG2000/1 $\,$ in typical LNB applications.


ISSUE 1 - AUGUST 2001

5

INFORMATION CONT.

APPLICATIONS


ORDERING INFORMATION

Part Number	Package	Part Mark	QTY Reel
ZNBG2000X10	MSOP10	ZNBG2000	4000
ZNBG2001X10	MSOP10	ZNBG2001	4000

6

PACKAGE DIMENSIONS

DIM	Millimetres	tol.	DIM	Millimetres	tol.
А	1.10	MAX.	F	4.9	±0.15
В	0.23	+0.07 -0.08	G	0.55	±0.15
С	0.18	60.05	н	3.00	±0.1
D	0.50	BSC	к	0.10	±0.05
E	3.00	60.1	а	3.0	±3.0°

© Zetex plc 2001

Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	Suite 315	3701-04 Metroplaza, Tower 1
Chadderton	D-81673 München	700 Veterans Memorial Highway	Hing Fong Road
Oldham, OL9 8NP		Hauppauge NY11788	Kwai Fong, Hong Kong
United Kingdom	Germany	USA	China
Telephone (44) 161 622 4422	Telefon: (49) 89 45 49 49 0	Telephone: (631) 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4420	Fax: (49) 89 45 49 49 49	Fax: (631) 360 8222	Fax: (852) 24250 494

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to $\boldsymbol{WWW.zetex.com}$

