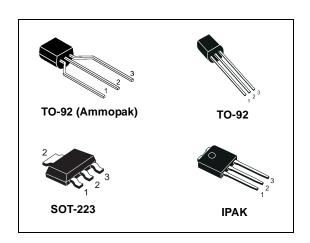


STD1LNK60Z-1 STQ1NK60ZR - STN1NK60Z

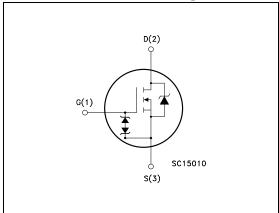
N-CHANNEL 600V - 13Ω - 0.8A - TO-92 - IPAK - SOT-223 Zener-Protected SuperMESH™ Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D	Pw
STD1LNK60Z-1	600V	<15Ω	0.8A	25W
STQ1NK60ZR	600V	<15Ω	0.3A	3W
STN1NK60Z	600V	<15Ω	0.3A	3.3W


- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- ESD improved capability
- New high voltage benchmark

Description


The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh™ products.

Applications

■ Switching application

Internal schematic diagram

Order codes

Sales Type	Marking	Package	Packaging
STD1LNK60Z-1	D1LNK60Z	IPAK	TUBE
STQ1NK60ZR	Q1NK60ZR	TO-92	BULK
STQ1NK60ZR-AP	Q1NK60ZR	TO-92	AMMOPAK
STN1NK60Z	1NK60Z	SOT-223	TAPE & REEL

February 2006 Rev 7 1/14

1 Electrical ratings

Table 1. Absolute maximum ratings

Sumbal	Parameter		Value		l lmi4
Symbol	Parameter	IPAK	TO-92	SOT-223	Unit
V _{DS}	Drain-Source Voltage (V _{GS} = 0)		600		V
V _{DGR}	Drain-Gate Voltage ($R_{GS} = 20K\Omega$)		600		V
V _{GS}	Gate-Source Voltage		± 30		V
I _D	Drain Current (continuous) at T _C = 25°C 0.8 0.3				Α
I _D	Drain Current (continuous) at T _C =100°C 0.5 0.189		0.189		
I _{DM} ⁽¹⁾	Drain Current (pulsed)	3.2		1.2	Α
P _{TOT}	Total Dissipation at T _C = 25°C	25	3	3.3	W
	Derating Factor	0.24	0.25	0.26	W/°C
V _{ESD(G-D)}	Gate source ESD(HBM-C=100pF, R=1.5KΩ)		800		V
dv/dt ⁽²⁾	Peak Diode Recovery voltage slope	4.5		V/ns	
T _J T _{stg}	Operating Junction Temperature Storage Temperature		-55 to 150		

^{1.} Pulse width limited by safe operating area

Table 2. Thermal resistance

Symbol	Parameter		Unit		
	Farameter	IPAK	TO-92	SOT-223	Oill
R _{thj-case}	Thermal resistance junction-case Max	5		°C/W	
R _{thj-a}	Thermal resistance junction-ambient Max	100	120	37.87 ⁽¹⁾	°C/W
R _{thj-lead}	Thermal resistance junction-lead Max	sistance junction-lead Max 40		°C/W	
T _I	Maximum lead temperature for soldering purpose	275	275 260		°C

^{1.} When mounted on 1 inch² FR-4 board, 2 Oz Cu

Table 3. Avalanche data

Symbol	Symbol Parameter		Unit
I _{AR}	Avalanche Curent, Repetitive or Noy-Repetitive (pulse width limited by Tj Max)	0.8	А
E _{AS}	Single pulse avalanche Energy (starting Tj=25°C, Id=Iar, Vdd=50V)	60	mJ

^{2.} $I_{SD} \leq 0.3A$, di/dt $\leq 200A/\mu s$, $V_{DD} = 80\%V_{(BR)DSS}$

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test Condictions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0$	600			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, V_{DS} = MaxRating @125°C			1 50	μA μA
I _{GSS}	Gate Body Leakage Current (V _{DS} = 0)	V _{GS} = ±20V			±10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 50\mu A$	3	3.75	45	V
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 10V, I _D = 0.4A		13	15	Ω

Table 5. Dynamic

Symbol	Parameter Test Condictions		Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward Transconductance	$V_{DS} = 15V, I_D = 0.4A$		0.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V_{DS} =25V, f=1 MHz, V_{GS} =0		94 17.6 2.8		pF pF pF
C _{oss eq} ⁽²⁾ .	Equivalent Output Capacitance	V _{GS} =0, V _{DS} =0V to 480V		11		pF
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} =480V, I_{D} = 0.8A V_{GS} =10V (see Figure 11)		4.9 1 2.7	6.9	nC nC nC

^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5%

^{2.} $C_{oss\,eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} inceases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test Condictions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	V_{DD} =300 V, I_{D} = 0.4A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 19)		5.5 5 13 28		ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test Condictions	Min	Тур.	Max	Unit
I _{SD}	Source-drain Current				0.8	Α
I _{SDM} ⁽¹⁾	Source-drain Current (pulsed)				2.4	Α
V _{SD} ⁽²⁾	Forward on Voltage	I _{SD} =0.8A, V _{GS} =0			1.6	V
t _{rr}	Reverse Recovery Time	I _{SD} =0.8A,		135		ns
Q_{rr}	Reverse Recovery Charge	$di/dt = 100A/\mu s$,		216		nC
I _{RRM}	Reverse Recovery Current	V _{DD} =20V, Tj=25°C		3.2		Α
t _{rr}	Reverse Recovery Time	I _{SD} =0.8A,		140		ns
Q_{rr}	Reverse Recovery Charge	$di/dt = 100A/\mu s$,		224		nC
I _{RRM}	Reverse Recovery Current	V _{DD} =20V, Tj=150°C		3.2		Α

^{1.} Pulse width limited by safe operating area

Table 8. Gate-source zener diode

Symbol	Parameter	Test Condictions	Min.	Тур.	Max.	Unit
BV _{GSO} ⁽¹⁾	Gate-source Braekdown Voltage	Igs=±1mA (Open Drain)	30			V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{2.} Pulsed: pulse duration=300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area for IPAK

Figure 2. Thermal impedance for IPAK

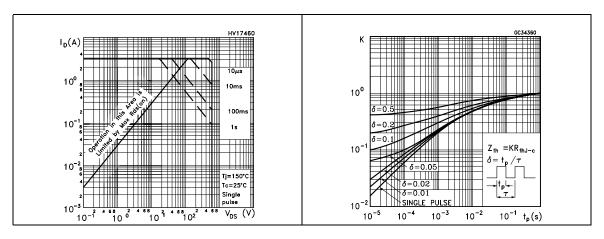


Figure 3. Safe operating area for TO-92

Figure 4. Thermal impedance for TO-92

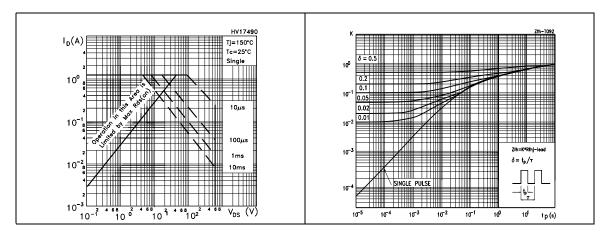
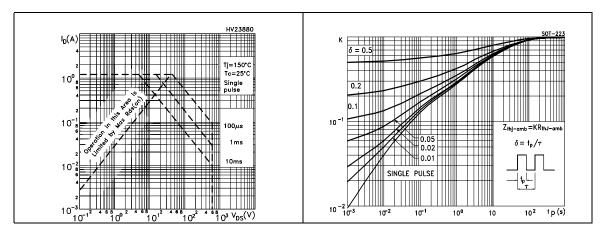
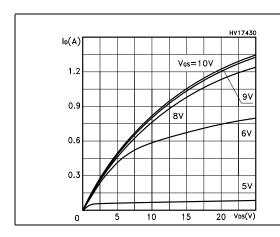



Figure 5. Safe operating area for SOT-223


Figure 6. Thermal impedance for SOT-223

Rev 7 5/14

Figure 7. Output characterisics

Figure 8. Transfer characteristics

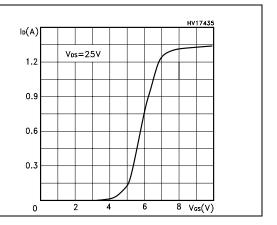
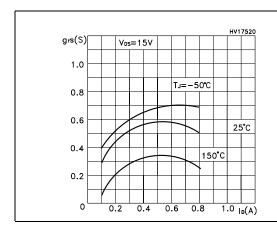



Figure 9. Transconductance

Figure 10. Static drain-source on resistance

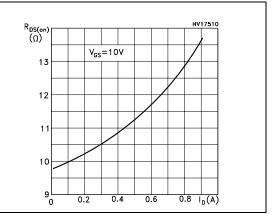
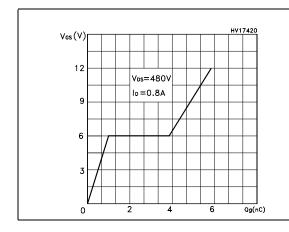



Figure 11. Gate charge vs gate-source voltage Figure 12. Capacitance variations

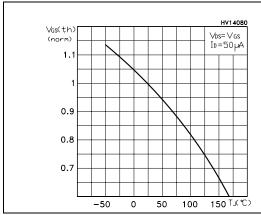



Figure 13. Normalized gate threshold voltage vs temperature

Figure 14. Normalized on resistance vs temperature

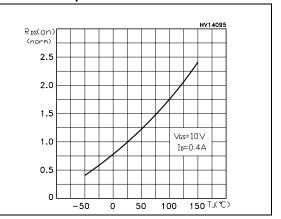
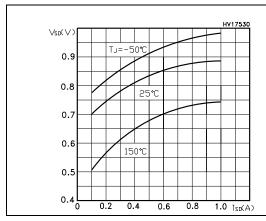



Figure 15. Source-drain diode forward characteristics

Figure 16. Normalized B_{VDSS} vs temperature

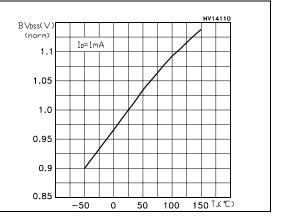
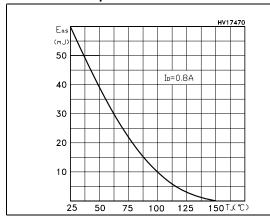
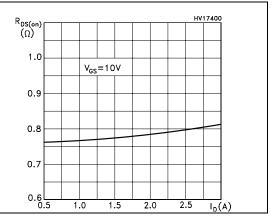




Figure 17. Maximum avalanche energy vs temperature

Figure 18. Max Id Current vs Tc

57

Test circuit 3

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

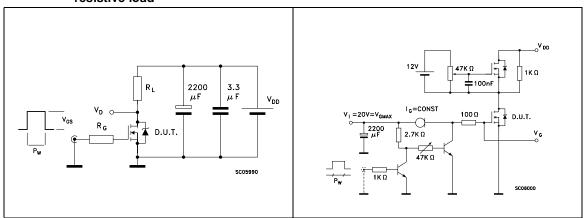


Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped Inductive load test circuit

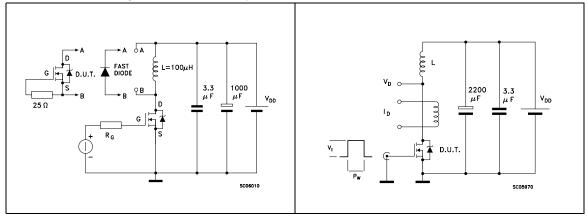
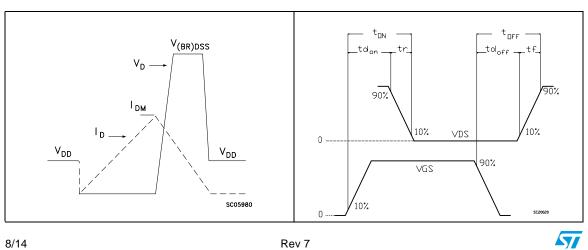
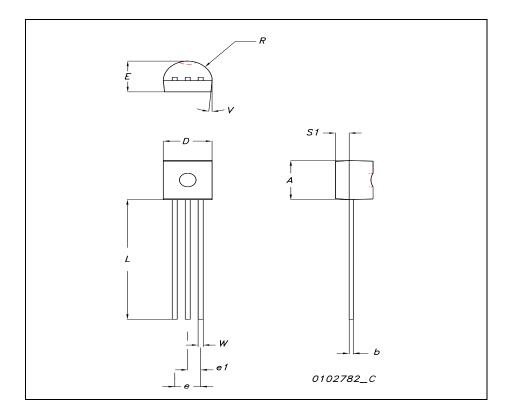



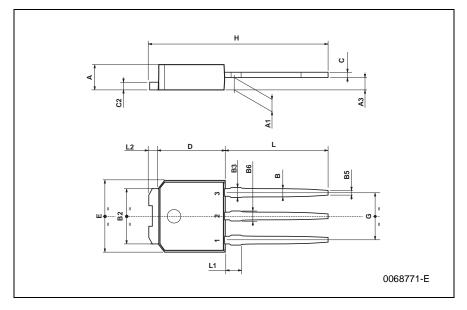
Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

Rev 7


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com


TO-92 MECHANICAL DATA

DIM.		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.32		4.95	0.170		0.194	
b	0.36		0.51	0.014		0.020	
D	4.45		4.95	0.175		0.194	
Е	3.30		3.94	0.130		0.155	
е	2.41		2.67	0.094		0.105	
e1	1.14		1.40	0.044		0.055	
L	12.70		15.49	0.50		0.610	
R	2.16		2.41	0.085		0.094	
S1	0.92		1.52	0.036		0.060	
W	0.41		0.56	0.016		0.022	
V		5°			5°		


TO-251 (IPAK) MECHANICAL DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
В3			0.85			0.033
B5		0.3			0.012	
В6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

SOT-223 MECHANICAL DATA

DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
а	2.27	2.3	2.33	89.4	90.6	91.7
b	4.57	4.6	4.63	179.9	181.1	182.3
С	0.2	0.4	0.6	7.9	15.7	23.6
d	0.63	0.65	0.67	24.8	25.6	26.4
e1	1.5	1.6	1.7	59.1	63	66.9
e4			0.32			12.6
f	2.9	3	3.1	114.2	118.1	122.1
g	0.67	0.7	0.73	26.4	27.6	28.7
I1	6.7	7	7.3	263.8	275.6	287.4
12	3.5	3.5	3.7	137.8	137.8	145.7
L	6.3	6.5	6.7	248	255.9	263.8

5 Revision history

Table 9. Revision history

Date	Revision	Changes	
19-Mar-2003	1	First Release	
15-May-2003	2	Removed DPAK	
09-Jun-2003	3	Final datasheet	
17-Nov-2004	4	Inserted SOT-223	
15-Feb-2005	5	Modified Figure 3.	
07-Sep-2005	6	Inserted ecopak indication	
22-Feb-2006	7	New template	

13/14

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

