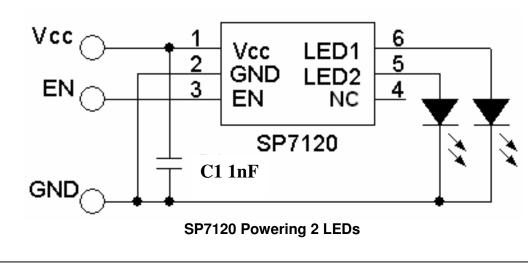

SP7120/22

2 or 3 Channel Low Dropout High Side Linear LED Driver

FEATURES

- LED Driver for common cathode parallel connected LEDs
- Ultra Low Dropout Voltage of 150mV
- No EMI, no switching noise
- Integrated current matching
- PWM and Analog brightness control
- Enable/Shutdown control
- Shutdown current < 1µA
- Lead Free, RoHS Compliant Package: Small footprint SOT23-6


APPLICATIONS

- Mobile Phones
- PDA, DSC, MP3 players
- Handheld Computers
- Keypads and display backlight

GENERAL DESCRIPTION

The SP712X driver's family provides a simple solution for a matched current source for any color common cathode LED configuration. The common cathode connection allows the user to increase the LED power dissipation by having the cathodes heat-sinked to the ground plane of the circuit board. The SP7120 may drive two LEDs or one LED at twice the current with two channels connected in parallel. The SP7122 can drive three LEDs or one LED at three times the current. The factory preset current values are 15mA (version A), 20mA (version B), or 25mA (version C) per channel. In shutdown mode (EN pin is LOW), the supply current drops to 40nA typical. The SP712x drivers are available in a small footprint 6-pin SOT23-6 package.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Ambient operating temperature -40 to+85 ℃

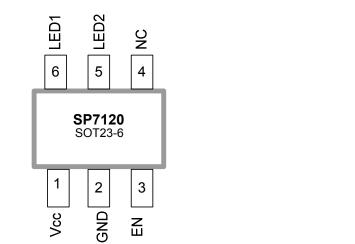
Vcc, V_{LED1} , V_{LED2} , and EN to GND	-0.3V to 6V
Junction Temperature	+150 <i>°</i> C
Operating Temperature	40 to +85°C
Storage Temperature65	℃ to +150 ℃
Package Thermal resistance θ_{JA} .	190 <i>°</i> C/W
ESD Level	2kV HBM
ESD Level	200V MM
ESD Level EN	1.5kV HBM
Lead Temperature (Soldering, 10	sec)300℃

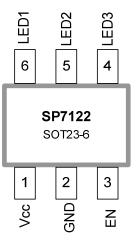
- ELECTRICAL CHARACTERISTICS

Parameter		Min	Тур	Max	Units	Conditions
Vcc		2.7		5.5	V	
Shutdown Current	t		0.04	1	μA	EN = LOW
VLED Dropout Vo	Itage, Vd 1		160	200	mV	Vcc = 5.5V, ILED = 20mA
VLED Dropout vo	ltage, Vd ¹		140	180	mV	Vcc = 5.5V, ILED = 15mA
	Version A		15			$V_D = 300 mV$
LED Current per Channel	Version B		20		mA	$V_D = 300 mV$
Channel	Version C		25			VD = 300mV
	Version A		0.5	0.7		
	Version B		0.7	1.1		SP7120 at V _D = 300mV
Quiescent	Version C		0.86	1.7	mA	
Current	Version A		0.6	0.8		
	Version B		0.9	1.2		SP7122 at V _D = 300mV
	Version C		0.99	1.9		
LED to LED Curre	LED to LED Current Matching ⁶		0.8		%	$Vcc = 5.5V, V_D > 300mV$
	LED Current Accuracy ²			3	%	300mV <vd<1.0v< td=""></vd<1.0v<>
LED Current Line	LED Current Line Regulation ³			.25	%/V	2.7V < Vcc < 5.5V
LED Current Load	I Regulation ⁴			1.0	%/mA	300mV < V _D < 1.0V
LED Current Thermal Regulation			0.01		%/ºC	$V_D = 300 mV$
EN ON Voltage (HIGH) ⁵		2		Vcc	V	
EN OFF Voltage (LOW)		0		0.8	V	
EN Input Bias Current		2	3	5	μA	VEN = Vcc = 5.5V
EN Switching Frequency				20	kHz	
EN ON Minimum Pulse Width				15	μs	

Specifications are at Ta=25°C, Vcc = 2.7 to 5.5, ENABLE =Vcc

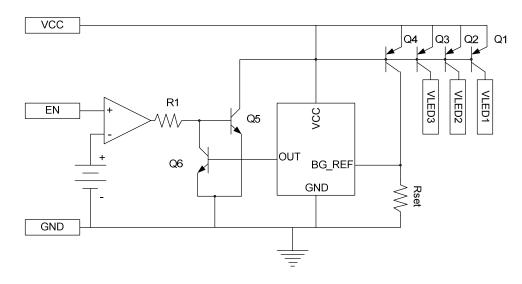
1) Difference between Vcc voltage and LED anode voltage at which ILED current drops 10% from nominal value


2) ILED Current Variations from specified value


3) ILED Current Variations per volt Vcc change for any given temperature

4) ILED Current Variations at VD change from 0.3V to 1.0V

5) EN input voltage should not exceed Vcc voltage at any condition


6) This condition is part of the LED current accuracy and it shall not exceed that specification

Pin Name	SP7120	SP7122	Pin Description			
Vcc	1	1	Power input pin. Bypass Vcc to GND with 1nF capacitor as close to VIN as possible			
GND	2	2	Ground pin			
EN	3	3	Enable pin. Device is active if EN is logic HIGH			
NC	4		No Connect should be left floating			
LED3		4	Connect anode of LED3			
LED2	5	5	Connect anode of LED2			
LED1	6	6	Connect anode of LED1			

BLOCK DIAGRAM

OUTPUT CURRENT SELECTION TABLE

Part Number	Output Current per channel	Number of Channels	Comments
SP7120A	15mA	2	Channels can be combined for higher output current
SP7120B	20mA	2	Channels can be combined for higher output current
SP7120C	25mA	2	Channels can be combined for higher output current
SP7122A	15mA	3	Channels can be combined for higher output current
SP7122B	20mA	3	Channels can be combined for higher output current
SP7122C	25mA	3	Channels can be combined for higher output current

The SP712X drivers are regulated current sources with an enable input. The SP7120 and SP7122 have factory preset LED current at three programmed levels: 15mA, 20mA or 25mA (versions A, B, and C respectively). The SP712X circuit consists of enable, bandgap reference, and current amplifier circuit blocks. Enable circuit block provides the enable and PWM function for the SP712x. The bandgap reference provides a stable voltage source from which the output current is derived.

ENABLE

The SP712X drivers have a low current shutdown function. In shutdown mode, the part draws less than 1 μ A current maximum. The part can be set into shutdown mode using the EN pin (EN = LOW). The enable pin cannot be left floating. There are no predefined internal states, so leaving this pin open will cause the part to operate incorrectly.

PWM Dimming

The SP712X drivers allow LED-dimming control by applying PWM signaling to EN pin. The acceptable frequency range of this signal is 100Hz to 20 kHz. The minimum ON time that is required for the Enable pin is 15µs. Thus for a 2kHz PWM signal, the acceptable duty cycle range is 3% to 100%. To find the minimum PWM duty cycle the following steps are needed:

CIRCUIT DESCRIPTION

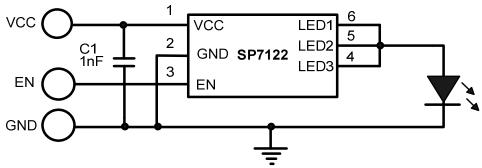
Step 1: Determine the time period of the PWM frequency

$$T = \frac{1}{PWMf}$$

Where PWM*f* is the PWM frequency

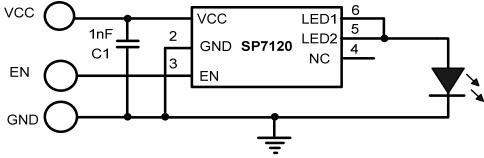
Step 2: take the minimum enable ON time; this is 15µS for the SP712x parts

%Minimum Duty Cycle =
$$\left(\frac{15uS}{T}\right) \cdot 100$$

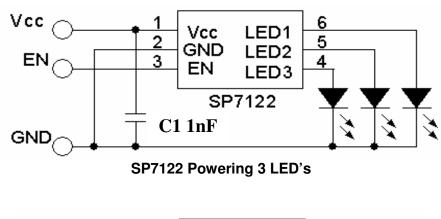

Example For a 2kHz signal the minimum duty cycle for the PWM signal is

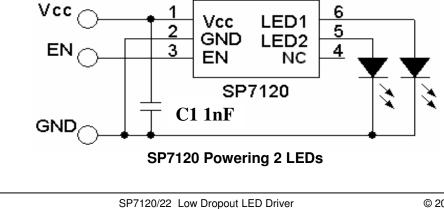
$$T = \frac{1}{2000Hz} = 500uS$$

%Minimum Duty Cycle = $\left(\frac{15uS}{500uS}\right) \cdot 100$


%Minimum Duty cycle = 3%

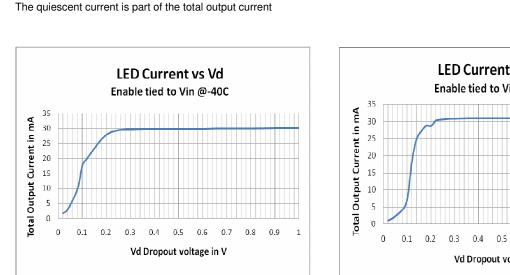
Fault Operation

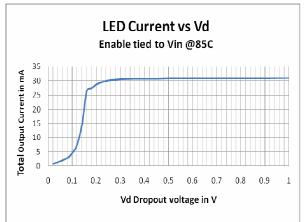

If one of LEDs is shorted, the voltage across The Sp712X for that LED pin will be Vcc, but that channel will still provide the nominal current value thus increasing power dissipation. If all channels are shorted, excessive power dissipation may damage the device. If an LED is open, the LED pin voltage will be pulled up to Vcc, and LED current will be reduced to 3mA for the other channels.



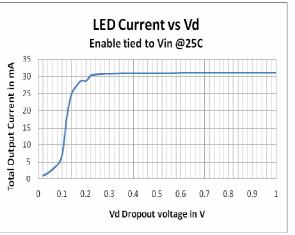
Powering 1 high power LED IOUT up to 75mA with C version

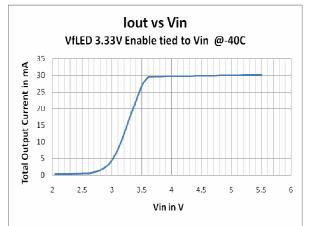
Powering 1 high power LED IOUT up to 50mA with C version



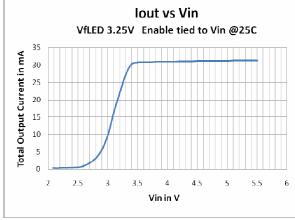

BOARD LAYOUT AND GROUNDING

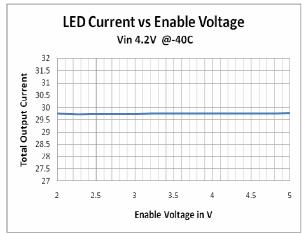
TYPICAL PERFORMANCE SP7120A


To obtain the best performance from the SP712X, a printed circuit board with ground plane is required. High quality, low series resistance ceramic 1nF bypass capacitors should be used at the Vcc and GND pins. This capacitor must be located as close to the pins as possible. The traces connecting the pins and these capacitors must be kept short and should be made as wide as possible.

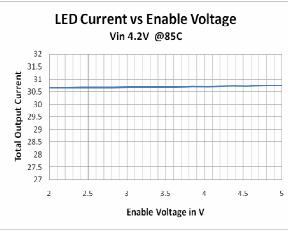

IOUT is for 2 Channels 15mA per channel

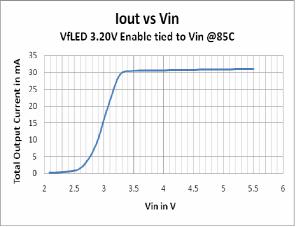
IOUT is for 2 Channels 15mA per channel

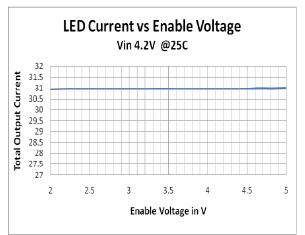

IOUT is for 2 Channels 15mA per channel

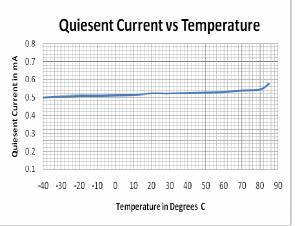

IOUT is for 2 Channels 15mA per channel

TYPICAL PERFORMANCE SP7120A

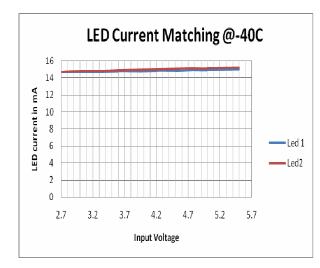

The quiescent current is part of the total output current

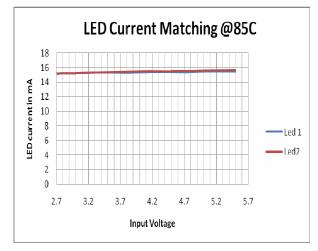

IOUT is for 2 Channels 15mA per channel

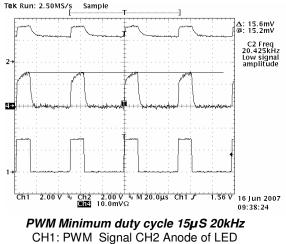

IOUT is for 2 Channels 15mA per channel


IOUT is for 2 Channels 15mA per channel

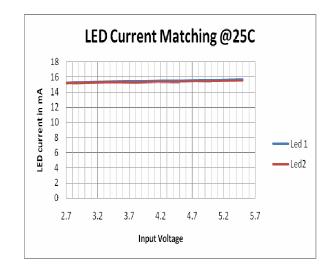
IOUT is for 2 Channels 15mA per channel

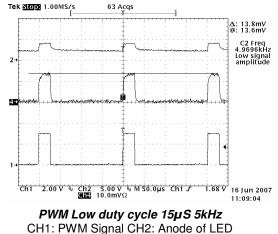


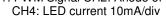

IOUT is for 2 Channels 15mA per channel

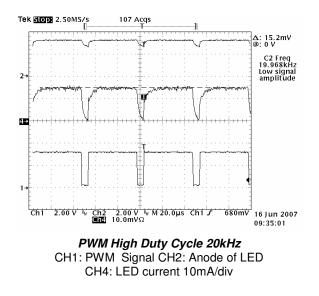


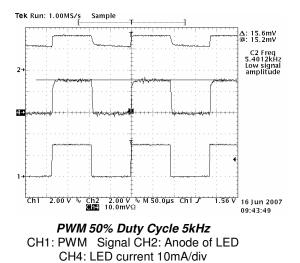
IOUT is for 2 Channels 15mA per channel

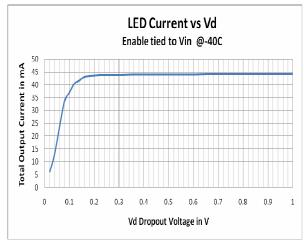

TYPICAL PERFORMANCE SP7120A

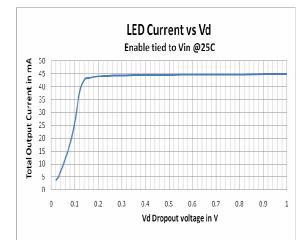




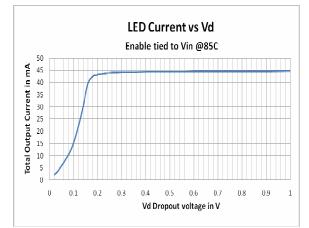

CH4: I FD current 10mA/div

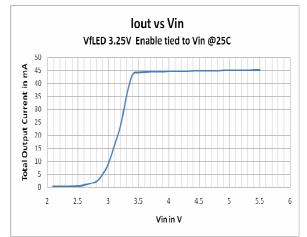


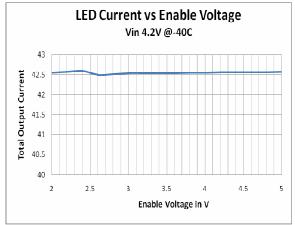

TYPICAL PERFORMANCE SP7120A

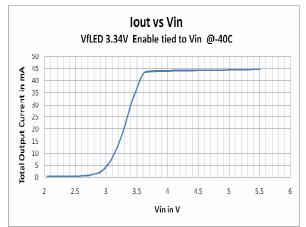


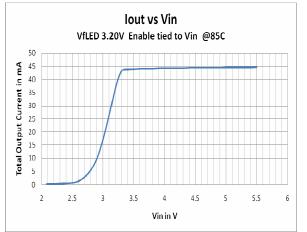
TYPICAL PERFORMANCE SP7122A

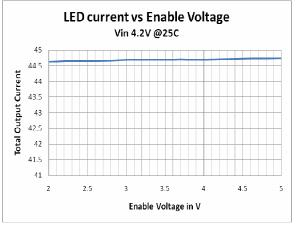

The quiescent current is part of the total output current


IOUT is for 3 Channels 15mA per channel

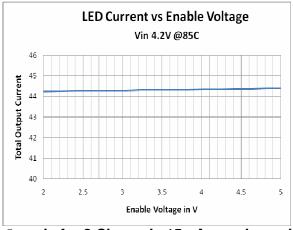

IOUT is for 3 Channels 15mA per channel


IOUT is for 3 Channels 15mA per channel

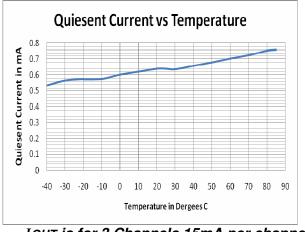

IOUT is for 3 Channels 15mA per channel


IOUT is for 3 Channels 15mA per channel

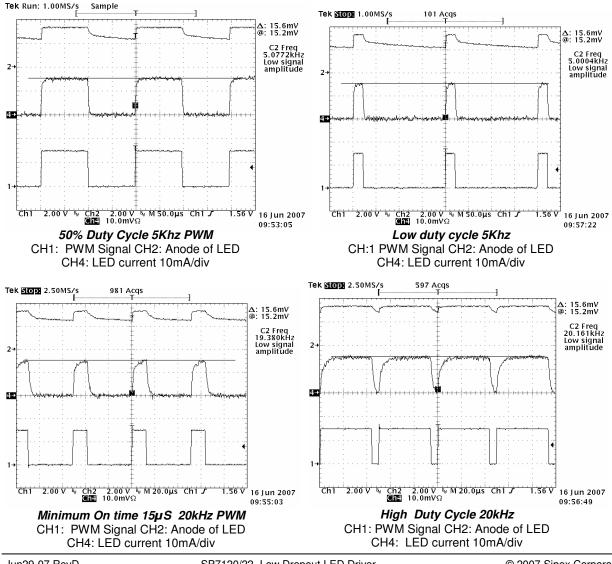
IOUT is for 3 Channels 15mA per channel



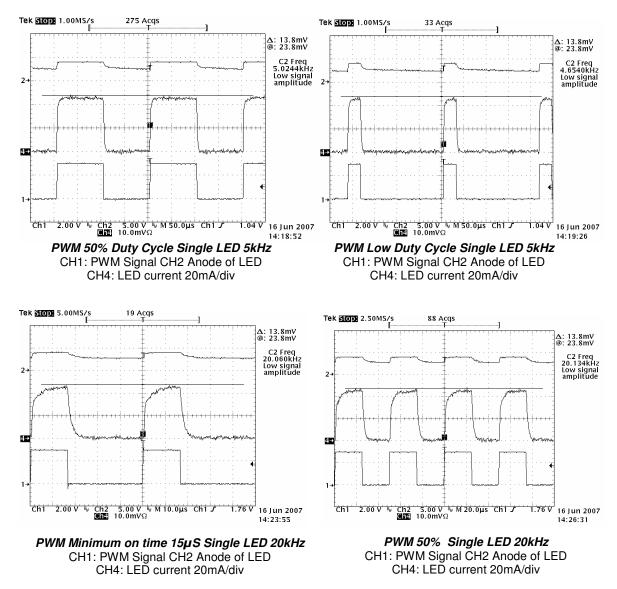
IOUT is for 3 Channels 15mA per channel

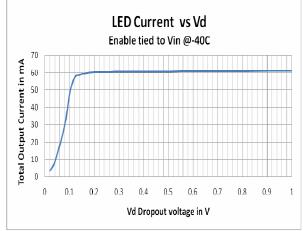


IOUT is for 3 Channels 15mA per channel

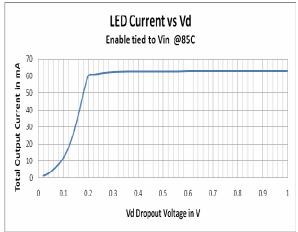

The quiescent current is part of the total output current

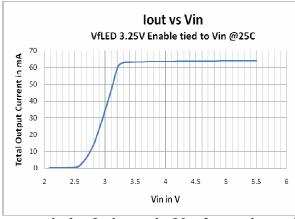
IOUT is for 3 Channels 15mA per channel

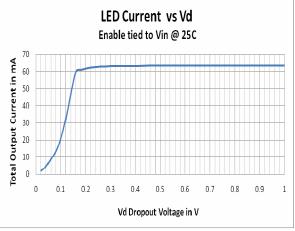

IOUT is for 3 Channels 15mA per channel

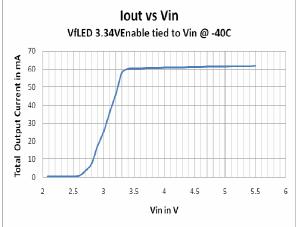

Jun29-07 RevD

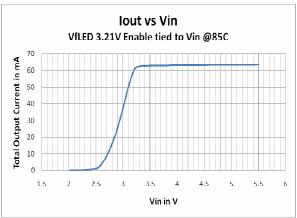
SP7120/22 Low Dropout LED Driver


TYPICAL PERFORMANCE SP7122A

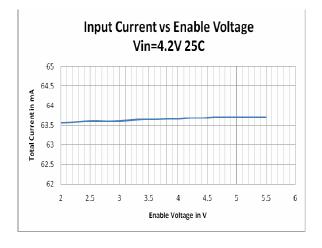

The quiescent current is part of the total output current


IOUT is for 3 channels 20mA per channel

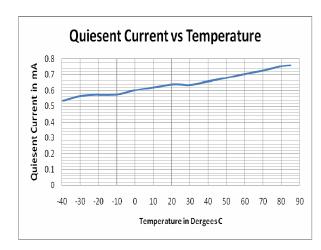

IOUT is for 3 channels 20mA per channel


IOUT is for 3 channels 20mA per channel

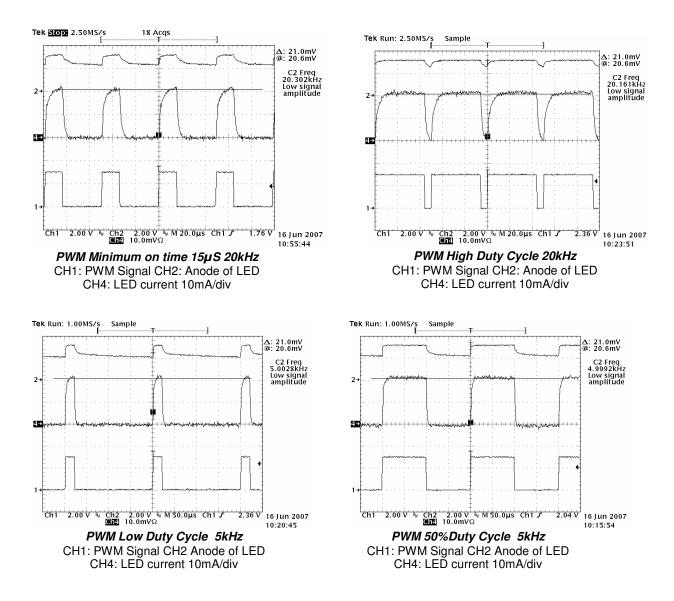
IOUT is for 3 channels 20mA per channel

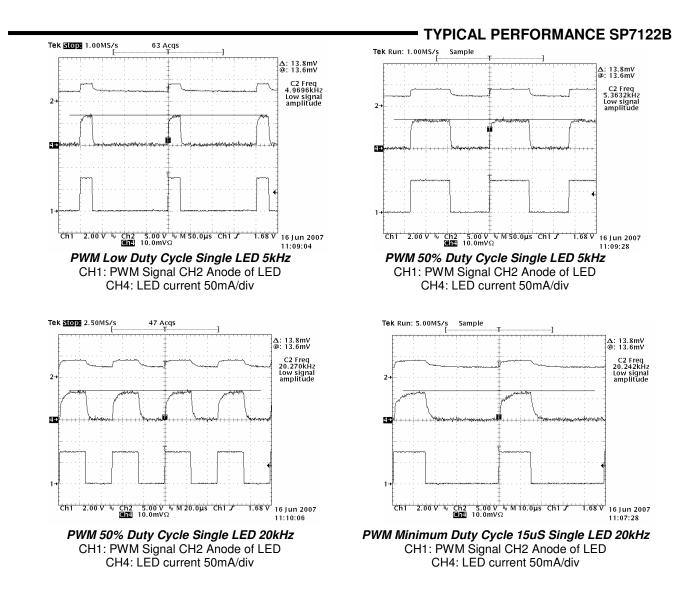


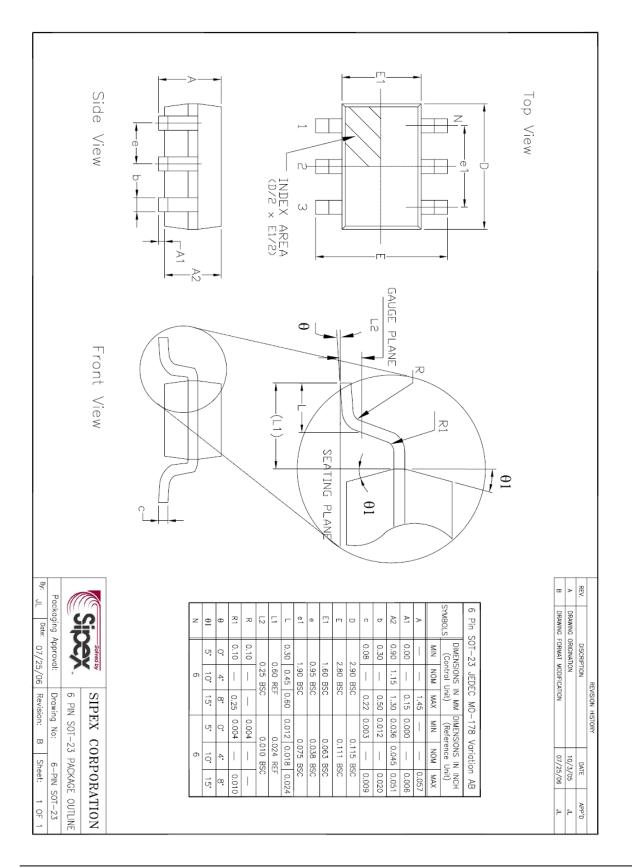
IOUT is for 3 channels 20mA per channel



IOUT is for 3 channels 20mA per channel


TYPICAL PERFORMANCE SP7122B





Part Number	Temp Range	Package Type	RoHS/ Lead Free	Output Current per Channel	# of Channels	θja (°C/W)	Moisture Sensitivity Level
SP7120AEK-L/TR	-40 ℃ to +85 ℃	SOT23-6	Yes	15mA	2	190	L1 @ 260ºC
SP7120BEK-L/TR	-40 ℃ to +85 ℃	SOT23-6	Yes	20mA	2	190	L1 @ 260ºC
SP7120CEK-L/TR	-40 ℃ to +85 ℃	SOT23-6	Yes	25mA	2	190	L1 @ 260ºC
SP7122AEK-L/TR	-40 ℃ to +85 ℃	SOT23-6	Yes	15mA	3	190	L1 @ 260ºC
SP7122BEK-L/TR	-40 ℃ to +85 ℃	SOT23-6	Yes	20mA	3	190	L1 @ 260ºC
SP7122CEK-L/TR	-40 ℃ to +85 ℃	SOT23-6	Yes	25mA	3	190	L1 @ 260ºC

Pack quantity is 2500 for SOT23-6 tape and reel.

For further assistance:

Email: WWW Support page: Sipex Application Notes: <u>Sipexsupport@sipex.com</u> <u>http://www.sipex.com/content.aspx?p=support</u> <u>http://www.sipex.com/applicationNotes.aspx</u>

Sipex Corporation Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA95035 tel: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Jun29-07 RevD

SP7120/22 Low Dropout LED Driver page 17