SEMIKRON INC

Maximum Ratings

Symbol	Conditions	Values	Units
VCEVsus	I _C = 1 A, V _{BE} = -2 V	1000	V
Vcev	V _{BE} = -2 V	1000	V
V _{CBO}	l∈ = 0	1000	V
V _{EBO}	Ic = 0	7	V
lc	D. C.	50	Α
Ісм	t _p = 1 ms	100	Α
lf = -lc	D. C.	50	Α
lв		3	Α
P _{tot}	T _{case} = 25 °C, per darlington	400	W
Tvj		- 40 · · · + 150	°C
T _{stg}		- 40 + 125	°C
Visol	a. c. 50 Hz, r.m.s.	2500~	٧

Thermal Characteristics

Rthjc	per darlington/per module	0,31/0,15	°C/W
Rthjc	per diode/per module	1,2/0,6	°C/W
Rthch	per ½ module/per module	0,15/0,075	°C/W

Electrical Characteristics¹⁾

	"		min.	typ.	max.	
ICEV	$V_{CE} = V_{CEV}$, $V_{BE} = -2 V$				1	mΑ
IEBO	$I_C = 0$, $V_{BE} = -7 \text{ V}$	72.7			200	mΑ
V _{CEsat} ²⁾	Ic = 50 A, I _B = 1 A				2,5	٧
V _{BEsat} ²⁾	Ic = 50 A, I _B = 1 A				3,5	٧
h _{21E} ²⁾	I _C = 50 A	$V_{CE} = 2,8 \text{ V}$	75			
11216	10 - 50 A	$V_{CE} = 5 \text{ V}$	100			

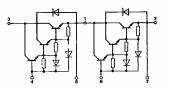
Switching Characteristics for Resistive Load¹⁾

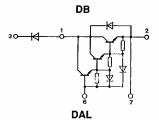
	ton) Ic = 50 A	0,8	2,5	μs
į	ts	} I _{B1} = − I _{B2} = 1 A	11	15	μs
	tr	Vcc = 600 V	2	3	μs

Inverse Diode Characteristics1)

	de endracteriones				
V _F = -V _{CE}	I _F = - I _C = 50 A			1,75	٧
I _{FSM} = - I _{Cp}	sin 180°, 10 ms	500			Α
I _{RM}	$ \begin{cases} I_F = -I_C = 50 \text{ A, } - \text{dir/dt} = 100 \text{ A/} \mu \text{s} \\ V_{BE} = -3 \text{ V, } V_R = V_{CE} = 400 \text{ V,} \end{cases} $		35		Α
Q _{rr}	T _{vj} = 125 °C		17		μC

Mechanical Data


M ₁	Case to heatsink	SI units	3		6	Nm
1411	Case to Heatsilik	US units	27		53	lb. in.
M ₂	Busbars to terminals	SI units	2,5		5	Nm
IVI2	Duspais to terminais	US units	22		44	lb. in.
W				250		g
Case		DB		D 11		
Case		DAL		D 21		


 $^{1)}$ T_{case} = 25 °C unless otherwise stated $^{2)}$ $t_{p} \leq~300~\mu s,~D~\leq~1,5~\%$

SEMITRANS® 2 NPN **Power Darlington Modules** 50 A, 1000 V 7-33-35

SK 50 DB 100 D SK 50 DAL 100 D

Features

- Isolated baseplate (ease of mounting of one or several modules on one heatsink)
- All electrical connections on top (ease of interconnecting of modules with busbars/PCB)
- Large clearances and creepage distances
- Parallel connected fast recovery inverse diode

 UL recognized, file no. 63 532

Typical Applications

- Switched mode power supplies DC servo and robot drives AC motor controls Brake choppers (DAL)

© by SEMIKRON

B7-71

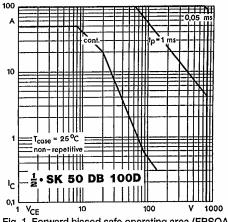


Fig. 1 Forward biased safe operating area (FBSOA)

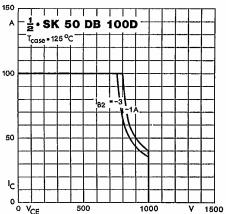


Fig. 3 Reverse biased safe operating area (RBSOA)

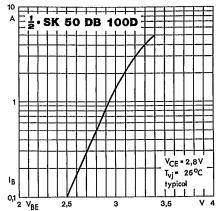


Fig. 5 Base current/voltage characteristic

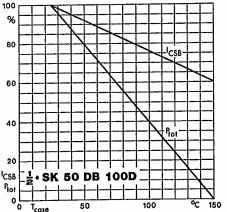


Fig. 2 Shifting the limits of the FBSOA with temperature

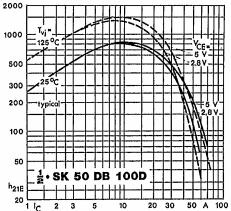


Fig. 4 Forward current transfer ratio vs. coll. current

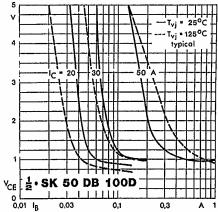


Fig. 6 Collector-emitter voltage vs. base current

B7-72 © by SEMIKRON

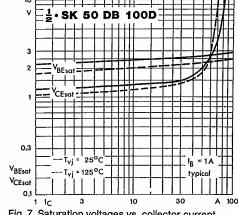


Fig. 7 Saturation voltages vs. collector current

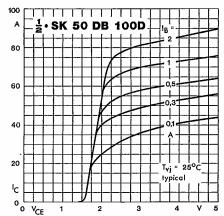


Fig. 9 Collector current/voltage characteristics

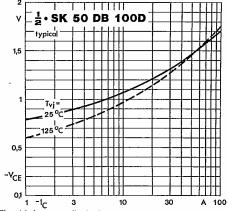


Fig. 11 Inverse diode forward characteristics

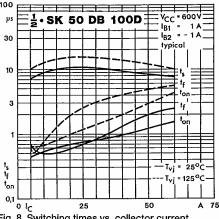


Fig. 8 Switching times vs. collector current

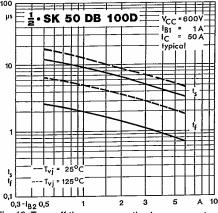


Fig. 10 Turn-off times vs. negative base current

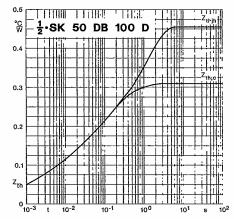
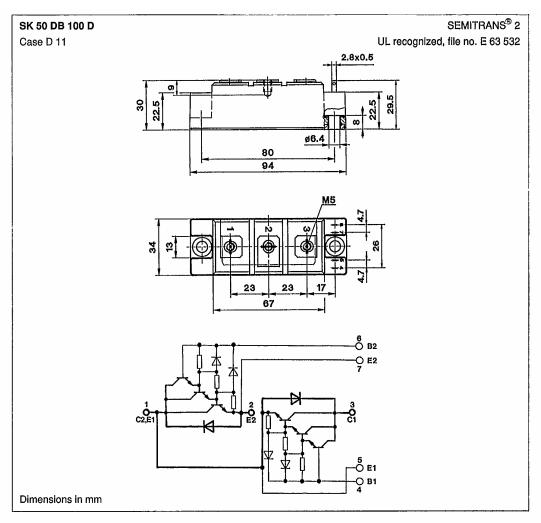
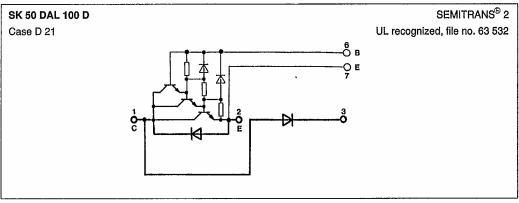




Fig. 12 Transient thermal impedance vs. time

© by SEMIKRON B7-73

B 7 – 74 © by SEMIKRON