

HA17558B Series

Dual Operational Amplifier

REA03D0003-0100 Rev.1.00 Dec 25, 2006

Description

HA17558B is dual bipolar op-amp with improved characteristics compared to HA17558A. It has wide bandwidth, low noise, high slew rate; wide operating voltage range and high gain characteristics.

This product has a wide range of applications that is appropriate for audio application, as well as AC/DC converter.

Features

Wide bandwidth: 7 MHz
High speed: 3 V/μs

Low input noise voltage: 1 μVrms
 Large DC voltage gain: 110 dB

• Operating voltage: ±2 V to ±18 V

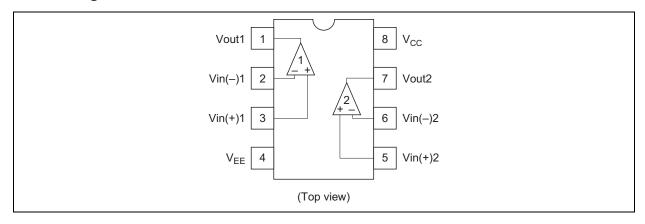
• Package outline available in Pb free lead frame:

DP-8

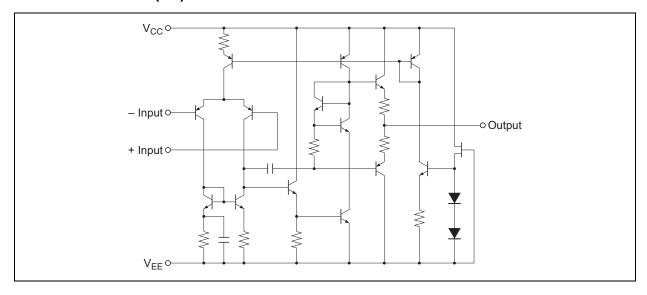
SOP-8 (JEITA) SOP-8 (JEDEC)

Applications

- Audio AC-3 decoder system
- Audio amplifier
- AC/DC converter


Ordering Information

Type No.	Application	Package Code (Package Name)
HA17558B	Commercial use	PRDP0008AF-B (DP-8FV)
HA17558BF		PRSP0008DE-B (FP-8DGV)
HA17558BRP		PRSP0008DD-C (FP-8DCV)


Note: This product is designed for consumer use and not for automotive.

Pin Arrangement

Circuit Schematic (1/2)

Absolute Maximum Ratings

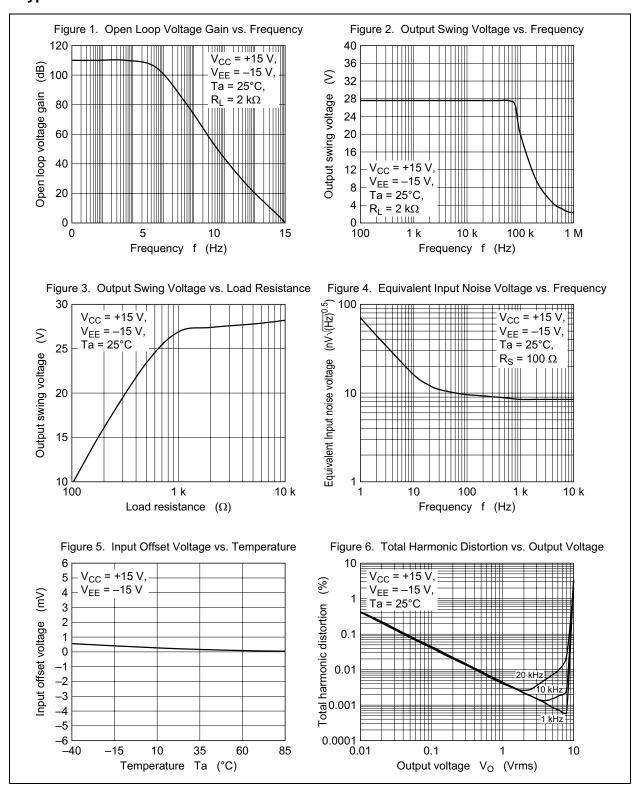
 $(Ta = 25^{\circ}C)$

		Ratings			
Item	Symbol	HA17558B	HA17558BF	HA17558BRP	Unit
Supply Voltage	V _{CC}	18	18	18	V
	V _{EE}	-18	-18	-18	V
Differential input voltage	V _{IN} (diff)	±30	±30	±30	V
Common mode input voltage	V _{CM} * ³	±15	±15	±15	V
Power dissipation	P _T	670 * ¹	385 * ²	385 * ²	mW
Operating temperature	Topr	-40 to +85	-40 to +85	-40 to +85	°C
Storage temperature	Tstg	-55 to +125	-55 to +125	-55 to +125	°C

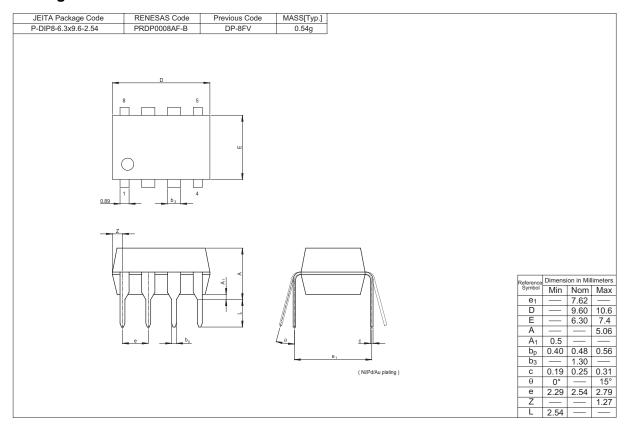
Notes: 1. This is the allowable value up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature.

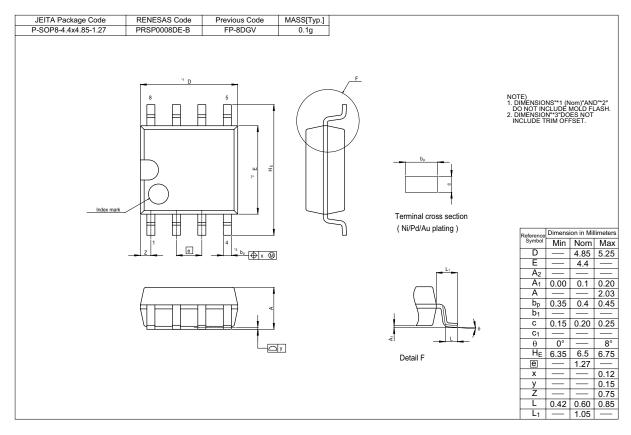
- 2. These are the allowable values up to $Ta = 60^{\circ}C$ mounting on $40\text{mm} \times 40\text{mm} \times 1.6\text{mm}$ (t) 10% wiring density glass epoxy board. Derate by 5.9 mW/°C above that temperature.
- 3. If the supply voltage is less than ± 15 V, input voltage should be less than supply voltage.

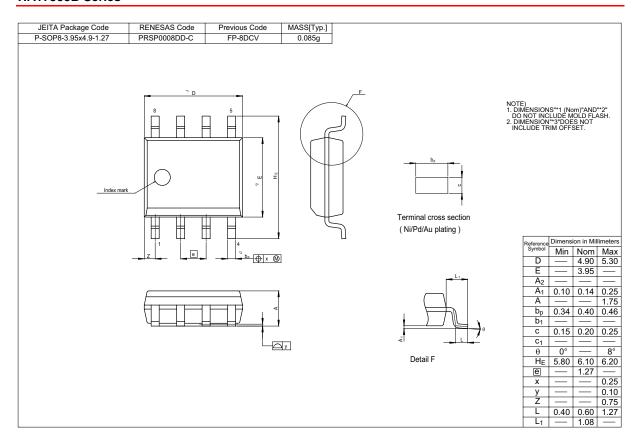
Electrical Characteristics


 $(Ta = 25^{\circ}C, V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, \text{ unless otherwise specified})$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	V _{IO}	_	0.5	3	mV	$R_S \le 10 \text{ k}\Omega$
Input offset current	I _{IO}	_	5	50	nA	
Input bias current	I _{IB}		65	250	nA	
Supply current	Icc	_	2.5	4	mA	
Power supply rejection ratio	PSRR	80	100	_	dB	$R_S \le 10 \text{ k}\Omega$
Voltage gain	Av	85	110	_	dB	$R_L \ge 2~k\Omega,~V_O = \pm 10~V$
Common mode rejection ratio	CMR	80	100	_	dB	$R_S \le 10 \text{ k}\Omega$
Output swing voltage	Vos	±10	±13	_	V	$R_L \geq 2 \; k\Omega$
		±12	±14	_	V	$R_L \ge 10 \text{ k}\Omega$
Output sink current	I _{OSINK}	_	70	_	mA	$V_{IN(-)} = 1 \text{ V}, V_{IN(+)} = 0 \text{ V},$ $V_{O} = 2 \text{ V}$
Output source current	I _{OSOURCE}	_	45	_	mA	$V_{IN(-)} = 0 \text{ V}, V_{IN(+)} = 1 \text{ V},$ $V_{O} = 2 \text{ V}$
Slew rate	SR	_	3	_	V/μs	
Equivalent input noise voltage	V _{NI}	_	1	_	μVrms	RIAA, $R_S = 1 \text{ k}\Omega$, 30 kHz LPF
Gain bandwidth product	fu	_	7	_	MHz	f = 10 kHz
Total harmonic distortion	THD	_	0.0045	_	%	f = 1 kHz, V _O = 1 Vrms


Table of Graphs


Electrical Characteristics		Figure	
Open loop voltage gain	vs. Frequency f	1	
Output swing voltage	vs. Frequency f	2	
Output swing voltage	vs. Load resistance R _L	3	
Equivalent input noise voltage	vs. Frequency f	4	
Input offset voltage	vs. Temperature Ta	5	
Total harmonic distortion	vs. Output Voltage Vo	6	


Typical Characteristics Curves

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bidg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. Whis document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas groducts for their use. Renesas neither makes may not be rights or any other rights of rany other rights of ranges or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws destruction to for the purpose of any other military such as a product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information however, is subject to change without any prior notice. Before purchasign or using any Renease spructus isled in this document, pleases confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to develope the information in light of the total system before deciding about the applicable of years as such as a such a

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510