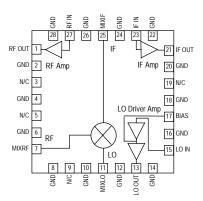


Product Features

- High dynamic range downconverter with integrated LO, IF, & RF amps
- RF: 1710 2000 MHz
- IF: 65 - 250 MHz
- +38 dBm Output IP3
- +21 dBm Output P1dB
- 5.3 dB Noise Figure
- Single supply operation (+5 V)
- 6x6 mm 28-pin QFN package
- Low-side LO configuration
- Common footprint with other PCS/UMTS/cellular versions

Specifications¹


Product Description

The CV111-1 is a high linearity downconverter designed to meet the demanding issues for performance, functionality, and cost goals of current and next generation mobile infrastructure basestations. It provides high dynamic range performance in a low profile surface-mount leadless package that measures 6 x 6 mm square.

Functionality includes RF amplification, frequency conversion and IF amplification, while an integrated LO driver amplifier powers the passive mixer. The MCM is implemented with reliable and mature GaAs MESFET and InGaP HBT technology.

Typical applications include frequency down conversion, modulation and demodulation for receivers used in CDMA/GSM/TDMA, CDMA2000, W-CDMA, GPRS, and EDGE 2.5G mobile infrastructure technologies for PCS / DCS frequency bands.

Functional Diagram

Parameters	Units	Minimum	Typical	Maximum	Comments
RF Frequency Range	MHz	1710		2000	
LO Frequency Range	MHz	1460		1935	
IF Center Frequency Range	MHz	65	240	250	See note 2
% Bandwidth around IF center frequency	%		±7.5		See note 2
SSB Conversion Gain	dB		21		$Temp = 25^{\circ} C$
Gain Drift over Temp (-40° C to 85° C)	dB		±1.5		Referenced to +25° C
Output IP3	dBm		+38		See note 3
Output IP2	dBm		+48		See note 3
Output 1dB Compression Point	dBm		+21		
Noise Figure	dB		5.3		See note 4
LO Input Drive Level	dBm	-2.5	0	+2.5	
LO-RF Isolation	dB		45		$P_{LO} = 0 \text{ dBm}$
LO-IF Isolation	dB		35		$P_{LO} = 0 \text{ dBm}$
Return Loss: RF Port	dB		14		
Return Loss: LO Port	dB		14		
Return Loss: IF Port	dB		11		
Operating Supply Voltage	V	+4.9	+5	+5.1	
Supply Current	mA	290	360	480	
FIT Rating	$\frac{\text{failures}}{1\text{E9 hrs}}$			72.1	@ 70° C ambient, 90% confidence
Junction Temperature	°C			160	See note 5

 Specifications when using the application specific circuit (shown on page 3) with a low side LO = 0 dBm in a downconverting application over the operating case temperature range.
The IF bandwidth of the converter is defined as 15% around any center frequency in its operating IF frequency range. The bandwidth is determined with external components. Specifications are valid around the total $\pm 7.5\%$ bandwidth. ie. with a center frequency of 240 MHz, the specifications are valid from 240 ± 18 MHz.

Assumes the supply voltage = +5 V. OIP3 is measured with $\Delta f = 1$ MHz with IF_{out} = 5 dBm / tone. Assumes LO injection noise is filtered at the thermal noise floor, -174 dBm/Hz, at the RF, IF, and Image frequencies.

5. The maximum junction temperature ensures a minimum MTBF rating of 1 million hours of usage

Absolute Maximum Rating

Ordering Information

Parameters	Rating	Part No.	Description
Operating Case Temperature	-40° to +85° C	CV111-1	PCS/DCS-band High Linearity Downconverter
Storage Temperature	-55° to +125° C	CV111-1PCB240RX	Fully-Assembled Application Board,
DC Voltage	+6 V		RF = 1850 – 1910 MHz, IF = 240 MHz
Junction Temperature	+220 °C	CV111-1PCB240TX	Fully-Assembled Application Board,
RF Input (continuous)	+2 dBm		RF = 1930 – 1990 MHz, IF = 240 MHz

Operation of this device above any of these parameters may cause permanent damage.

This document contains information on a new product. Specifications and information are subject to change without notice

Product Information

The Communications Edge TM

The Communications Edge TM

Gain

 (\mathbf{dB})

13

11

2

21

21.0

Current

(mA)

140

80

140

360

3.5

2.0

9.8

2.1

Product Information

Cumulative Performance

Output

IP3

(dBm)

41.0

39.0

22.2

38.1

38.1

NF

(**dB**)

3.5

3.6

4.7

5.2

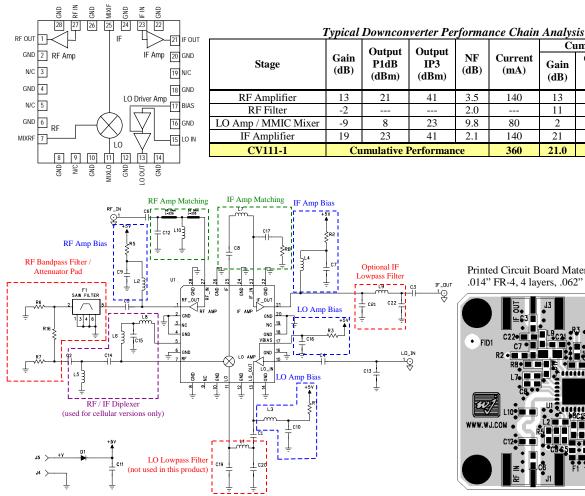
5.2

Output

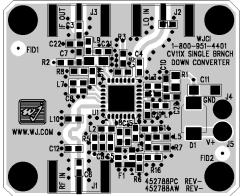
P1dB

(dBm)

21.0


19.0

5.9


20.8

20.8

Device Architecture / Application Circuit Information

Printed Circuit Board Material: .014" FR-4, 4 layers, .062" total thickness

CV111-1: The application circuit can be broken up into four main functions as denoted in the colored dotted areas above: RF/IF diplexing (purple; this is only used with the cellular-band CV products), amplifier matching (green), filtering (red), and dc biasing (blue). There are various placeholders for chip components in the circuit schematic so that a common PCB can be used for all WJ single-branch converters. Additional placeholders for other optional functions such as filtering are also included.

RF / IF Amplifier Matching: The RF amplifier requires a matching element (C12) for optimal gain and input return loss performance. The IF amplifier requires matching elements to optimize the performance of the amplifier to the desired IF center frequency. Since IF bandwidths are typically on the order of 5 to 10%, a simple two element matching network, in the form of either a high-pass or low-pass filter structure, is sufficient to match the MMIC IF amplifier over these narrow bandwidths. Proper component values for other IF center frequencies can be provided by emailing to applications.engineering@wj.com.

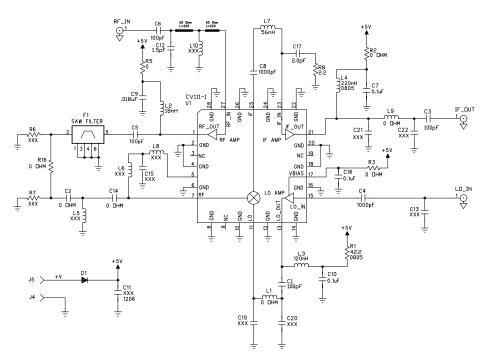
RF Bandpass Filtering: Bandpass filtering is recommended to achieve the best noise figure performance with the downconverter. The bandpass filter, implemented with a SAW filter on the application circuit, allows for the suppression of noise from the image frequency. It is permissible to not use a filter and use a 2 dB pad with R6, R7, and R16 instead with slightly degraded noise figure performance.

External Diplexer: This is only used with the cellular-band CV products. The mixer performs the diplexing internally for the CV111-1; therefore the components shown in the diplexer section should be loaded as follows: $C2 = C14 = 0 \Omega$.

IF and LO Lowpass Filtering (optional): Filtering of unwanted RF and LO signals are typically performed in the IF chain. This filtering function may be realized using lumped elements; placeholders (L9, C21, C22) are provided in the application circuit to allow for lumped-element filtering to be implemented if desired. The LO lowpass filter is used only in the cellular-band CV products; it should not be used for this product. L1 should be loaded with a 0 Ω jumper.

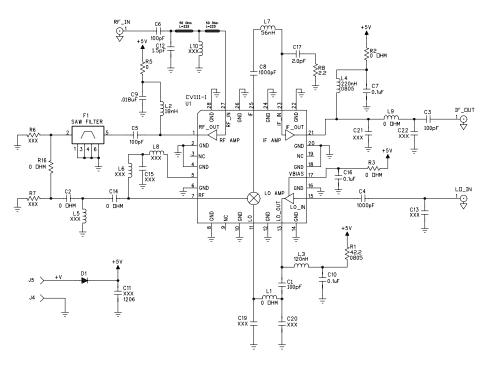
DC biasing: DC bias must be provided for the RF, LO and IF amplifiers in the converter. R1 sets the operating current for the last stage of the LO amplifier and is chosen to optimize the mixer LO drive level. Proper RF chokes and bypass capacitors are chosen for proper amplifier biasing at the intended frequency of operation. The "+5 V" dc bias should be supplied directly from a voltage regulator.

> This document contains information on a new product. Specifications and information are subject to change without notice


CV111-1 PCS/DCS-band High Linearity Downconverter

The Communications Edge TM

Product Information


Downconverting Application Circuit: CV111-1PCB240RX RF = 1850 – 1910 MHz, IF = 240 MHz

(Targeted for PCS-band Receive Path Downconversion Applications)

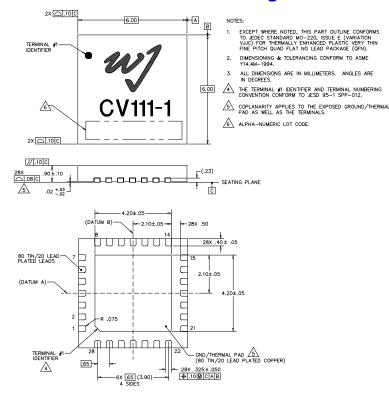
Downconverting Application Circuit: CV111-1PCB240TX RF = 1930 – 1990 MHz, IF = 240 MHz

(Targeted for PCS-band Transmit Path Error Correction Feedback Applications)

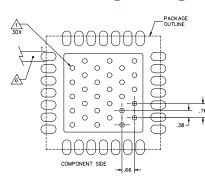
Bill of Materials				
Ref. Desig.	Component			
R1	42.2 Ω chip resistor, size 0805			
R2, R3, R5 R16, C2, C14, L1, L9	0Ω chip resistor			
R6, R7, C11 C13, C15, C19 C20, C21, C22 L5, L6, L8, L10	DNP			
R8	2.2 Ω chip resistor			
C1, C3, C5, C6	100 pF chip capacitor			
C4, C8	1000 pF chip capacitor			
C7, C10, C16	0.1 μF chip capacitor			
C9	0.018 µF chip capacitor			
C12	1.5 pF chip capacitor			
C17	2.0 pF chip capacitor			
L2	18 nH chip inductor			
L3	120 nH chip inductor			
L4	220 nH chip inductor, size 0805			
L7	56 nH chip inductor			
F1	SAWTEK Filter 855849 1850 – 1910 MHz BW			
D1	Jumper wire (or 0Ω resistor)			
U1	CV111-1 WJ Converter			

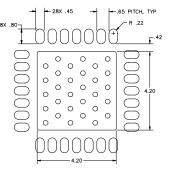
All components are of size 0603 unless otherwise specified. DNP represents "Do Not Place"

Bill of Materials Ref. Desig. Component 42.2 Ω chip resistor, R1 size 0805 R2, R3, R5 R16, C2, C14, 0Ω chip resistor L1, L9 R6, R7, C11 C13, C15, C19 DNP C20, C21, C22 L5, L6, L8, L10 **R**8 $2.2 \ \Omega$ chip resistor C1, C3, C5, C6 100 pF chip capacitor 1000 pF chip capacitor C4, C8 C7, C10, C16 0.1 µF chip capacitor C9 0.018 µF chip capacitor C12 1.5 pF chip capacitor 2.0 pF chip capacitor C17 L2 18 nH chip inductor 120 nH chip inductor L3 220 nH chip inductor, L4 size 0805 L7 56 nH chip inductor SAWTEK Filter 855817 F1 1920 – 1980 MHz BW Jumper wire D1 (or 0Ω resistor) U1 CV111-1 WJ Converter

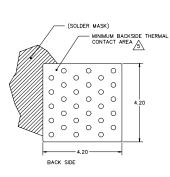

All components are of size 0603 unless otherwise specified. DNP represents "Do Not Place"

This document contains information on a new product. Specifications and information are subject to change without notice




Product Information

Outline Drawing



Mounting Configuration / Land Pattern

IN THIN

NOTES

- ⚠ GROUND/THERMAL WAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS DEVICE. WAS SHOULD USE A .35mm (#80/.0135") DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .25mm (.010").
- ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- TO ENSURE RELIABLE OPERATION, DEVICE GROUND PADDLE-TO-GROUND PAD SOLDER JOINT IS CRITICAL. 3.
- ADD MOUNTING SCREWS NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE GROUND/THERMAL VIA REGION CONTACTS THE HEATSINK.
- DO NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PE BOARD IN THE REGION WHERE THE BOARD CONTACTS THE HEATSINK. ∕₅∖
- RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 7. USE 1 OZ. COPPER MINIMUM.
- 8. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.

Product Marking

The component will be lasermarked with a "CV111-1" product label with a four-digit alphanumeric lot code on the top surface of the package. Tape and reel specifications for this part will be located on the website in the "Application Notes" section.

ESD Classification: Value: Test:	Passes ≥ 500 V to <1000 V Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114
ESD Classification:	Class III
Value:	Passes \geq 500 V to <1000 V
Test:	Charged Device Model (CDM)
Standard:	JEDEC Standard JESD22-C101

MSL Rating: Standard:

Level 1 at +250 °C convection reflow JEDEC Standard J-STD-020B

Functional Pin Layout

Pin	FUNCTION	Pin	FUNCTION	
1	RF Amp Output	15	LO Amp Input	
2	GND	16	GND	
3	N/C	17	LO Amp Bias	
4	GND	18	GND	
5	N/C	19	N/C	
6	GND	20	GND	
7	Mixer RF Input	21	IF Amp Output/Bias	
8	GND	22	GND	
9	N/C	23	IF Amp Input	
10	GND	24	GND	
11	Mixer LO Input	25	Mixer IF Output	
12	GND	26	GND	
13	LO Amp Output	27	RF Amp Input	
14	GND	28	GND	

This document contains information on a new product. Specifications and information are subject to change without notice