PRELIMINARY Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change. Some parametric limits are subject to SYS

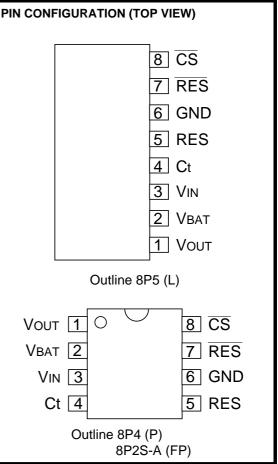
MITSUBISHI < Dig./Ana.INTERFACE>

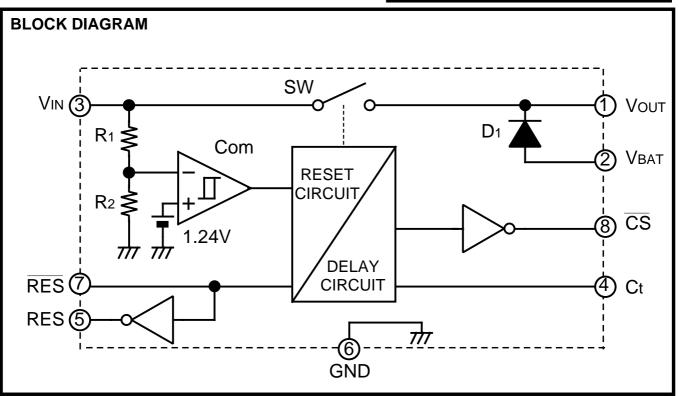
M62023L,P,FP

SYSTEM RESET IC WITH SWITCH FOR MEMORY BACK-UP

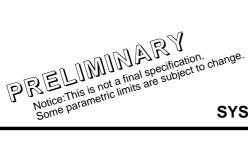
GENERAL DESCRIPTION

The M62023L/P/FP is a system reset IC that controls the memory backup function of an SRAM and an embedded RAM of a microcontroller.


The IC outputs reset signals (RES/RES) to a microcontroller at power-down and power failure. It also shifts the power supply to RAMs from main to backup, outputs a signal (\overline{CS}) that invokes standby mode, and alters RAMs to backup circuit mode.


FEATURES

- Built-in switch for selection between main power supply and backup power supply to RAMs
- Small difference between input and output voltages (Iout=80mA, VIN=3V) : 0.15V typ
- Detection voltage (power supply monitor voltage) : 2.57V typ
- Chip select signal output (CS)
- Two channels of reset outputs (RES/RES)
- Power on reset circuit


APPLICATION

Power supply control systems for memory of microcontroller systems in electronic equipment such as OA equipment, industrial equipment, and home-use electronic appliances and SRAM boards with built-in backup function that require switching between external power supply and battery.

MITSUBISHI < Dig./Ana.INTERFACE>

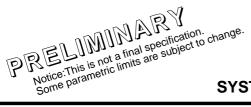
M62023L,P,FP

SYSTEM RESET IC WITH SWITCH FOR MEMORY BACK-UP

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vin	Input voltage		7	V
Ιουτ	Output current		100	mA
Pd	Power dissipation		800(L)/625(P)/440(FP)	mW
Ko	Thermal derating	Ta 25°C	8(L)/6.25(P)/4.4(FP)	
Topr	Operating temperature		-20 to +75	°C
Tstg	Storage temperature		-40 to +125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise noted)

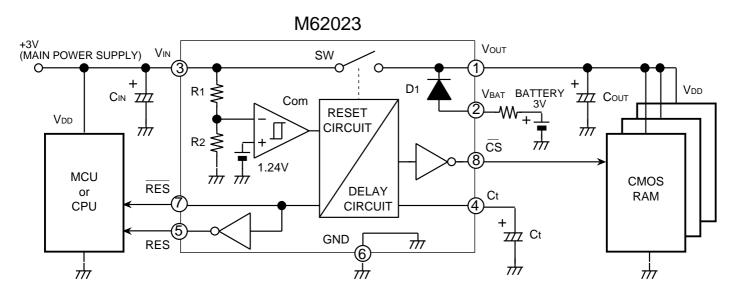

Cump hal	Deremeter	Test Conditions			Limits	l l mit	
Symbol	Parameter			Min	Тур	Max	Unit
Vs	Detection voltage	VIN (At charge from H → L)		2.44	2.57	2.70	V
Vs	Hysteresis voltage	VS=VSH-VSL		50	100	200	mV
Icc	Circuit current	IOUT=0mA	VIN=2V		1.5	3.0	mA
		1001=011A	VIN=3V		6.5	10	
Veeee	Difference between input and output voltages	VIN=3V	IOUT=50mA		0.1	0.2	V
Vdrop			IOUT=80mA		0.15	0.3	
VOH(Ct)	Ct output voltage (high level)	VIN=3V (Note 1)		2.0	2.4		V
VOL(Ct)	Ct output voltage (low level)	VIN=2V (Note 1)			0.02	0.1	V
VOH(RES)	RES output voltage (high level)	VIN=2V (Note 1)		1.5	2.0		V
	RES output voltage (low level)	VIN=3V	(Note 1)		0.02		V
VOL(RES)			Isink=1mA		0.04	0.2	
$VOH(\overline{RES})$	RES output voltage (high level)	VIN=3V (Note 1)		2.5	3.0		V
	RES output voltage (low level)	VIN=2V	(Note 1)		0.02		V
VOL(RES)		VIIN=ZV	Isink=1mA		0.04	0.2	
	CS output voltage (high level)	VIN=2V (Note 2) VIN=0V, VBAT=3V (Note 2)		1.3	1.6		V
VOH(CS)	CS output voltage (high level)			2.40	2.47		
	CS output voltage (low level)	VIN=3V	(Note 1)		0.07		V
VOL(CS)			Isink=1mA		0.08	0.3	
IR	Backup Di leak current	Vbat=3V	VIN=3V			±0.5	μA
IR		VBAT=3V	VIN=0V			±0.5	
VF	Backup Di forward direction voltage	IF=10µA			0.54	0.6	V
tpd	Delay time	VIN=0V → 3V, Ct=4.7µF		10	27	55	ms
td	Response time	VIN=3V →2V			5.0	25.0	μs
$V{\sf OPL}(\overline{\sf RES})$	RES limit voltage of operation	(Note 3)			0.65		V

Note 1. Regarding conditions to measure VOH and VOL, voltage values are generated by internal resistance only and no external resistor is used.

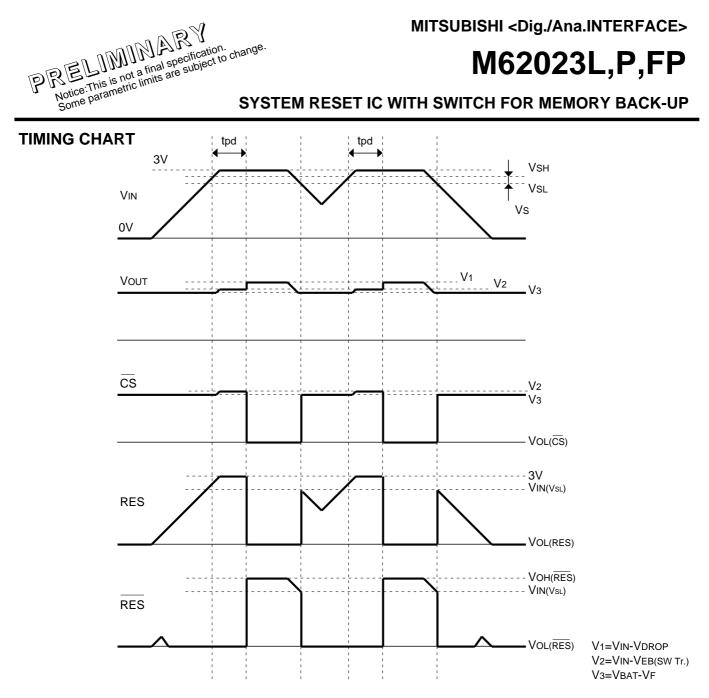
2. These values are produced inserting an external resistor, RCs=1M , between the CS pin and GND.

3. With no external resistor (10K internal resistance only)

MITSUBISHI < Dig./Ana.INTERFACE>


M62023L,P,FP

SYSTEM RESET IC WITH SWITCH FOR MEMORY BACK-UP


EXPLANATION OF TERMINALS

Pin No.	Symbol	Name	Function	
1 V	Vout	Power supply output	VIN and VBAT are controlled by means of an internal switch and output through	
			Vout.	
			The pin is capable of outputting up to 100 mA. Use it as VDD of CMOS RAM	
			and the like.	
2 VBAT		Backup power supply	Backup power supply is connected to this pin.	
2 VBAT	VBAT	input	If a lithium battery is used, insert a resistor in series for safety purposes.	
3	Vin	Power supply input	+3V input pin. Connect to a logic power supply.	
4	Ct	→ Delay capacitor	A delay capacitor is connected to this pin. By connecting a capacitor, it is	
4	Οi	connection pin	possible to delay each output.	
5	RES	S Positive reset output	Connect to the positive reset input of a microcontroller. The pin is capable of	
5	NL3		flowing 1mA sink current.	
6	GND	Ground	Reference for all signals	
7		RES Negative reset output	Connect to the negative reset input of a microcontroller. The pin is capable of	
	REO		flowing 1mA sink current.	
	CS	S Chip select output	Connect to the chip select of RAM. The CS output is at low level in normal state	
8			thereby letting RAM be active. Under failure or backup condition, the CS	
			output is set to high level, then RAM enters standby state disabling read/write	
			function. The pin is capable of flowing a 1mA sink current.	

APPLICATION EXAMPLE

. ★ Capacitance to be connected: CIN: 10µF; COUT: 4.7µF; Ct: 4.7µF

Input voltage	In normal operation	In failure (instantaneous drop)	Restoration from failure (instantaneous drop)	In backup state
Output pin	Input voltage : 3V	Input voltage : 3V → 2V Each output varies if the input voltage drops to VSL or under	Input voltage : 2V → 3V If the input voltage goes higher than VSL by 100mV, each output varies after delay produced by the delay circuit	Input voltage : 0V Backup voltage : 3V
Vout	With SW Tr. set to ON, a voltage (VIN-VDROP) is output	SW Tr. is turned OFF. A voltage (VIN-VEB) is output by the diode between E and B of SW Tr.	SW Tr. is turned ON after delay and a voltage (VIN-VDROP) is output	VBAT-VF
RES	The output level is VOL(RES) with a logic low	As the state shifts from a logic low to logic high, the output level becomes approximately equal to the input voltage	A logic high is maintained, and then shifts to a logic low	
RES	The output level is $VOH(\overline{RES})$ with a logic high	As the state shifts from a logic high to logic low, the <u>ou</u> tput level becomes VOL(RES)	A logic low is maintained, and then shifts to a logic high	
CS	The output level is $VOL(\overline{CS})$ with a logic low	As the state shifts from a logic low to logic high, the output level becomes the voltage VIN-VEB	A logic high is maintained, and then shifts to a logic low	The output is a logic high and the output level is VBAT-VF