

AC/DC Compact PCI Power Supply

POWER: 500 Watt AC/DC SIZE: 5.08" X 12.27" X 4.48" NUMBER OF OUTPUTS: 4

www.cdtechno.com click on Power Electronics

PRODUCT DATA SHEET

FEATURES

- 90-264 VAC INPUT RANGE
- ACTIVE POWER FACTOR CORRECTION
- 500 WATT CONTINUOUS OUTPUT POWER
- OUTPUTS INDIVIDUALLY PROTECTED AGAINST OVERLOADS; AUTOMATIC RECOVERY
- HOT-SWAP CAPABLE
- QUAD OUTPUT CONFIGURATION (5V, 3.3V, +12V, -12V)
- MEETS EMISSIONS SPECIFICATION FCC/EN55022 CLASS B
- SAFETY AGENCY APPROVED
- NO MINIMUM LOAD REQUIRED
- 83A COMBINED CURRENT FROM V1, V2

DESCRIPTION

The PCI500-4A is a modular, 500 watt, quad output power supply with active power factor correction. This hot-swap supply is designed specifically for redundant applications with active current sharing on the 5V and 3.3V outputs. The PCI500 incorporates a unique architecture that supports migration of 5V requirements to 3.3V by deriving both of these outputs from a common winding on the main transformer. The PCI500 is also ideal for networking equipment, communications and computer equipment where fault-tolerance is a necessity. A DC-input counterpart is available as the PCI500-4D for telecommunications environments. All outputs have remote sense and are individually protected against overloads and short circuits. With UL/cUL approval to UL1950, VDE approval to EN60950, CE Mark, and EMI compliance to FCC/CISPR22 Class B, the PCI500 provides a truly global power solution for your CompactPCI[™] requirements.

Power Electronics Division, United States 3400 E Britannia Drive, Tucson, Arizona 85706 Phone: 800.547.2537 Fax: 520.770.9369
 C&D Technologies, (NCL)

 Tanners Drive
 Blakelands North

 Milton Keynes
 MK14 SBU UK

 Tel: +44 (0)1908 615232
 Fax: +44 (0)1908 617545

Power Electronics Division, Europe C&D Technologies (Power Electronics) Ltd. 132 Shannon Industrial Estate, Shannon, Co. Clare, Ireland Tel: +353.61.474.133 Fax:+353.61.474.141

Any data, prices, descriptions or specifications presented herein are subject to revision by C&D Technologies, Inc. without notice. While such information is believed to be accurate as indicated herein, C&D Technologies, Inc. makes no warranty and hereby disclaims all warranties, express or implied, with regard to the accuracy or completeness of such information. Further, because the product(s) featured herein may be used under conditions beyond its control, C&D Technologies, Inc. hereby disclaims all warranties, either express or implied, concerning the fitness or suitability of such product(s) for any particular use or in any specific application or arising from any course of dealing or usage of trade. The user is solely responsible for determining the suitability of herein product(s) featured herein for user's intended purpose and in user's specific application. C&D Technologies, Inc. does not warrant or recommend that any of its products be used in any life support or aviation or areace applications.

COMMON INPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage	Vin	47-63Hz	90		264	VAC
Inrush Current		120Vac input (cold start)			37	Арк
		240VAc input (cold start)			75	Арк
Input Surge		1 second duration			300	VAC
Power Factor*	PF	120 Vac input, 500W load		0.99		
*Harmonic Correction meets EN61000-3-2 (formerly IEC 555-2)						

ENVIRONMENTAL/SAFETY

The PCI500-4A is safety certified to UL/cUL 1950, EN60950/IEC 950. It is in agreement with the Global Emissions Compliance as specified by FCC Pt. 15 Class B.; CISPR 22/EN55022, Class B. It meets the Global Immunity Compliance as specified by EN 61000-4-2, -3, -4 and -5, Level 3. The Input Transient Protection is IEEE C62.41-1991, Class A2, IEEE 587B. The Power Module is CE marked in compliance with the low voltage directive.

SPECIFICATION CHART

Parameter	Min	Тур	Мах	Units	
Temperature					
Operation	0		+40	C°	
Storage	-20		+70	C°	
Altitude					
Operating	up to 10,000 feet				
Non-Operating	up to 40,000 feet				
Humidity	95% max. (non-condensing)				

MECHANICAL

OUTPUT VOLTAGE/CURRENT

	ουτ Vout RATED OUTPU		יד JT CURRENT
OUTPUT NUMBER	RATED OUTPUT VOLTAGE	MIN	MAX
V1	+5.0V	0A	74A*
V2	+3.3V	0A	60A*
V3	+12.0V	0A	10A
V4	-12.0V	0A	2.5A

NOTES: Outputs 1 and 2 share common return. Outputs 3 and 4 have isolated Returns. *Combined current output of 1 and 2 not to exceed 83A.

COMMON OUTPUT SPECIFICATIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	МАХ	UNITS
Voltage Adjustment		All outputs		±5		%
Temperature Coefficient	тс	0-40°C ambient after			0.02	%/°C
		30 minute warm-up				
PARD		20MHz bandwidth			1% P-P	or 50mV _{P-P}
					whiche	ver is greater
Output Power		40°C max temp.			500	W

REGULATION (All Outputs)

PARAMETER	LIMIT
Line	± 0.2%
Load	±0.5%
Cross	±0.2%

COMMON OUTPUT CHARACTERISTICS

Transient Response

For a step load change of 25%, the peak output voltage excursion will not exceed 5% of nominal voltage, and will recover within 1% of nominal voltage in 400 microseconds.

Output Isolation

All outputs isolated from chassis.

Holdup Time

50 mSec minimum holdup at 250W load. Holdup time is approximately inversely proportional to the load.

Remote Sense

Remote Sense is on all outputs and is capable of compensating for 0.7V of line drop. Automatic local sensing is enabled on all outputs when remote sense leads are open. Remote sense leads are protected for open, reverse, and shorted conditions.

Hot Pluggable

Active Current Share circuitry on outputs V1 and V2, together with ORing diodes on all outputs and synchronous starting circuitry, allow for hot-swap in redundant applications.

CONTROL/ALARM SIGNALS

Remote Inhibit: Referenced to RTN (Logic), Pin 40 or 43. The power supply is off when the Remote Inhibit is less than 1V, typical.

Power Present LED:

A green LED will light when AC is applied and exceeds minimum operating limits.

DC Good Indicator:

A green LED will be illuminated when all outputs are between 90% and 110% (typical) of their nominal output voltage and extinguish when any voltage is out of this range. **Fan Fail:**

TTL level signal goes low when fan fails. Referenced to RTN (Logic), Pin 40 or 43. A green LED gives a visual indication that the fan is operational.

DC OK:

An open collector output signal with an internal $2.2K\Omega$ pull up resistor is connected to the +5V output. TTL signal will go high when all outputs are between 90% and 110% of their nominal output voltage.

Sync Start

A power supply generated signal used to simultaneously start supplies operated in parallel. These pins must be tied together at the backplane in parallel/redundant (N+0 or N+n) applications when N>1. In simple redundant (1+1) or non-parallel (1+0) applications, the pin can be ignored.

Current Share Bus

A power supply generated signal used to force current sharing between supplies operated in parallel (V1 and V2). These pins must be tied together at the backplane (5V CS to 5V

PINOUT ASSIGNMENTS

OUTPUT CONNECTOR WIRING				
PIN#	FUNCTION			
45 to 54	+3.3V			
55 to 64	+3.3V			
85 to 94	+5V			
95 to 104	+5V			
65 to 74	GND (3.3V/5V)			
75 to 84	GND (3.3V/5V)			
1 to 10	+12V			
11 to 20	GND (+12V)			
24, 25, 28	-12V			
21 to 23	GND (-12V)			
29	+5V Sense			
39	+3.3V Sense			
41	+12V Sense			
35	-12V Sense			
34 (Short)	Hot Swap Enable			
33	+5V Current Share			
27	+3.3V Current Share			
26	+5V Sense RTN			
36	+3.3V Sense RTN			
38	+12V Sense RTN			
32	-12V Sense RTN			
44	Fan Alarm			
30	DC Good			
42	Remote Inhibit			
37	Power Supply Present (GND)			
40	GND			
43	GND			
31	Sync Start			
1 to 10	ACLine			
11 to 20	ACNeutral			
21 to 30 (Long)	Chassis GND			

CONTROL/ALARM SIGNALS (cont'd)

CS and 3.3V CS to 3.3V CS).

Hot Swap Enable

This pin must be tied to the DC GND at the backplane for the power supply to operate. Since this pin is staged as the shortest in the connectors, it is a "last-make/first break" pin.

Power Supply Present

This pin presents a DC ground signal to the mating pin in the backplane. It is intended to be used by the system to detect if a power supply module is plugged into an available position.

OUTPUT PROTECTION

Over Current/Short Circuit Protection:

Outputs individually protected against overload and indefinite short circuit; automatic recovery after removal of fault. **Over Voltage Protection:**

Output #1: 6.5V ±.5V_{DC} typical

Output #2 4.3V ±.4V_{DC} typical

Over Voltage Protection will latch the power supply off until input power is cycled.

Power Limit:

Auto recovery; at 530W output power typical, the unit will cycle.

Reverse Voltage Protection:

All outputs protected up to rated current.

Over Temperature Protection:

Over Temperature shutdown with automatic recovery.

CONNECTOR PINOUT DIAGRAM

