Data Sheet

Description

The HEDS-973X is a high performance incremental encoder module. When operated in conjunction with either a codewheel or codestrip, this module detects rotary or linear position. The encoder consists of a lensed LED source and a detector IC enclosed in a small Cshaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.
The two channel digital outputs and 3.3 V supply input are accessed through four solder plated leads located on 2.54 mm (0.1 inch) centers.

The standard HEDS-973X is designed for use with an appropriate optical radius codewheel or linear codestrip. Other options are available. Please contact the factory for more information.

Block Diagram

Figure 1

Features

- Small Size
- High Resolution
- Two Channel Quadrature Output
- Linear and Rotary Applications
- No Signal Adjustment required
- TTL or $3.3 \mathrm{~V} / 5 \mathrm{~V}$ CMOS Compatible
- Wave Solderable
- Lead-free Package
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Operating Temperature
- Single 3.3V Supply

Applications

The HEDS-973X provides sophisticated motion detection, making closed loop control very cost competitive. Typical applications include printers, plotters, copiers and office automation equipment.
Note:
Avago Technologies' encoders are not recommended for use in safety critical applications, e.g., ABS braking systems and critical-care medical equipment. Please contact a sales representative if more clarification is needed.

Theory of Operation

A HEDS-973X is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel digital output; coupled with a codestrip, it translates linear motion into digital outputs.
As seen in Figure 1, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of photodetectors and a signal processing circuitry necessary to produce the digital waveforms.

The codewheel/codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel/ codestrip. The photodiodes, which detect these interruptions, are arranged in a pattern that corresponds to the radius and count density of the codewheel/ codestrip. These photodiodes are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pairs of detectors. The photodiode outputs are fed through the signal processing circuitry. Two comparators receive these signal and produce the final outputs for Channels A and B. Due to this integrated phasing technique the output of channel A is in quadrature with Channel B (90 degrees out of phase).

Output Waveforms

Definitions

Note: Refer to Figure 2
Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel. Or the number of lines per inch of the codestrip (LPI)

1 shaft Rotation $=360$ degrees
= N cycles

1 cycle (c) = 360 electrical degree, equivalent to 1 bar and window pair.

Pulse Width (P): The number of electrical degrees that an output is high during one cycle, nominally 180° e or $1 / 2$ a cycle.
Pulse Width Error $(\Delta \mathrm{P})$: The deviation in electrical degrees of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.

State Width Error ($\Delta \mathbf{S}$): The deviation in electrical degrees of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ) : The number of electrical degrees between the center of the high state on channel A and the center of the high state on channel B. This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.
Phase Error $(\Delta \phi)$: The deviation in electrical degrees of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the counter-clockwise direction (as viewed from the encoder end of the motor), channel A will lead channel B. If the codewheel rotates in the clockwise direction, channel B will lead channel A.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center $\left(\mathrm{O}^{\circ} \mathrm{C}\right)$ of the encoder module.

Angular Misalignment Error (E_{A}): Angular misalignment of the sensor in relation to then tangential direction. This applies for both rotary and linear motion.

Mounting Position (\mathbf{R}_{M}): Distance from Motor Shaft center of rotation to center of Alignment Tab receiving hole.

Figure 2.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	$\mathrm{V}_{\text {CC }}$	-0.5	7	Volts	
Output Voltage	V_{0}	-0.5	$\mathrm{~V}_{\text {CC }}$	Volts	
Output Current per Channel	$\mathrm{I}_{\text {OUT }}$	-1.5	19	mA	
Soldering Temperature	$\mathrm{T}_{\text {SOL }}$	20	260	${ }^{\circ} \mathrm{C}$	$\mathrm{t}^{*} 5 \mathrm{sec}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	2.8	3.3 or 5	5.2	Volts	Ripple $<100 \mathrm{mVp}-\mathrm{p}$
Load Capacitance	C_{L}			100	pF	
Pull-up Resistor	R_{L}		none			Recommend no pullup. Device has inte- grated $2.5 \mathrm{k} \Omega$ on outputs
Frequency	f			40	kHz	Velocity (rpm) $\mathrm{NN} / 60$
Angular Misalignment	E_{A}	-2.0	0.0	+2.0	Deg.	Refer to Mounting Consideration
Mounting Position	R_{M}		ROP-0.14 (ROP -0.006)		Mm (inch)	Refer to Mounting Consideration

Electrical Characteristics

Electrical Characteristics Over the Recommended Operating Conditions. Typical Values at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	$\mathrm{I}_{C C}$	12	25	40	mA	Typ. 3.3V
			55	85		Typ. 5V
High Level Output Voltage	V_{OH}	2.4			Volts	$\begin{aligned} & \text { When } \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}(\mathrm{Min}) \text { Typ. } \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \text { @ 3.3VTyp. } \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} @ 5 \mathrm{~V} \end{aligned}$
Low Level Output Voltage	$V_{0 L}$			0.4	Volts	$\begin{aligned} & \text { When } \mathrm{V}_{0 \mathrm{~L}}=0.4 \mathrm{~V}(\mathrm{Max}) \text { Typ. } \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \text { @ } 3.3 \mathrm{VTyp} . \\ & \mathrm{I}_{\mathrm{OL}}=14 \mathrm{~mA} @ 5 \mathrm{~V} \end{aligned}$
Rise Time	t_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	tf_{f}		50		ns	

Encoding Characteristics

Encoding Characteristics Over the Recommended Operating Conditions and Mounting Conditions These characteristics do not include codewheel/codestrip contribution. The typical values are average over the full rotation of the codewheel

Parameter	Symbol	Typical	Maximum	Units	Notes
Pulse Width Error	$\Delta \mathrm{P}$	5	50	${ }^{\circ} \mathrm{e}$	
State Width Error	ΔS	3	50	${ }^{\circ} \mathrm{e}$	
Phase Error	$\Delta \phi$	2	15	${ }^{\circ} \mathrm{e}$	

Mounting Considerations

DIMENSIONS IN MILLIMETERS (INCHES).

$\Theta|\mathrm{A}| 0.13 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$
Note: These dimensions include shaft end play and codewheel warp.
For both rotary and linear motion, angular misalignment, EA must be * ± 1 degrees to achieve Encoding Characteristics.
All dimension for mounting the module and codewheel/codestrip should be measured with respect to two mounting posts, as shown above

Recommended Codewheel and Codestrip Characteristics

Parameter	Symbol	Min.	Max.	Unit	Notes
Window/bar Ratio	Ww/Wb	0.9	1.1		
Window Length (Rotary)	LW	$\begin{aligned} & 1.80 \\ & (0.071) \end{aligned}$	$\begin{aligned} & 2.31 \\ & (0.091) \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (inch) } \end{aligned}$	
Absolute Maximum Codewheel Radius (Rotary)	Rc		$\begin{aligned} & \text { Rop + } 3.40 \\ & (\operatorname{Rop}+0.134) \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (inch) } \end{aligned}$	Includes eccentricity errors
Center of Post to Inside Edge of Window	W1	$\begin{aligned} & 1.04 \\ & (0.041) \end{aligned}$		$\underset{\text { (inch) }}{\mathrm{mm}}$	
Center of Post to Outside Edge of Window	W2	$\begin{aligned} & 0.76 \\ & (0.036) \end{aligned}$		$\begin{aligned} & \mathrm{mm} \\ & \text { (inch) } \end{aligned}$	
Center of Post to Inside Edge of Codestrip	L		$\begin{aligned} & 3.60 \\ & (0.142) \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (inch) } \end{aligned}$	

Ordering Information

Package Dimension

Option 50

Bent Version - Option 50

Wave Soldering Profile

	Parameter	Min.	Max.	Nominal values	Units
A	Solder Pot Temperature	NA	260	$250-260$	${ }^{\circ} \mathrm{C}$
B	Preheat Zone Temperature	85	120	$100-120$	${ }^{\circ} \mathrm{C}$
C	Dip in Time	5	7	5	sec
D	Solder Pot Zone (PCB Top)	NA	NA	NA	${ }^{\circ} \mathrm{C}$
E	Solder Pot Zone (Encoder Lead)	200	NA	≥ 200	${ }^{\circ} \mathrm{C}$

