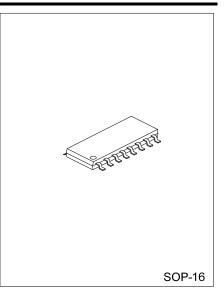
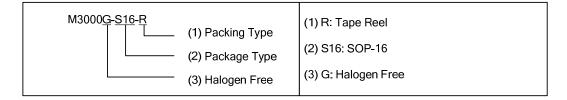
M3000 Preliminary LINEAR INTEGRATED CIRCUIT

# PIR INFRARED REMOTE CONTROL CIRCUIT


#### **■** DESCRIPTION

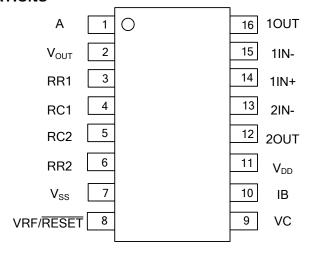
The M3000 is a passive infra-red controller using analog mixing digital design technique and is manufactured by CMOS process.

The M3000 needs only few external components in application circuit. It can be applied in controller of light, electric switching, burglar alarm, and so on.


#### **■ FEATURES**

- \* Low Power CMOS Technology
- \* CMOS High Input Impedance Operational Amplifiers
- \* Bi-Directional Level Detector / Excellent noise Immunity
- \* Built-in Power up Disable & Output Pulse Control Logic
- \* Dual Mode : Retriggerable & Non-Retriggerable

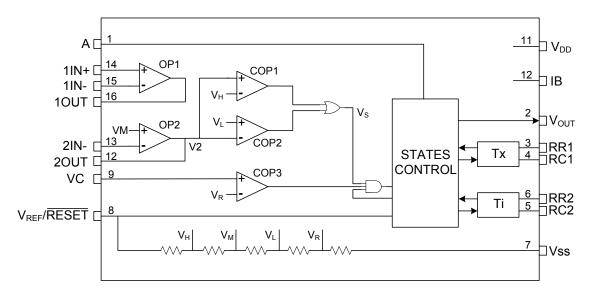



## **■ ORDERING INFORMATION**

| Ordering Number | Package | Packing   |
|-----------------|---------|-----------|
| M3000G-S16-R    | SOP-16  | Tape Reel |



www.unisonic.com.tw 1 of 6
Copyright © 2010 Unisonic Technologies Co., Ltd QW-R502-473.a


# **■ PIN CONFIGURATIONS**



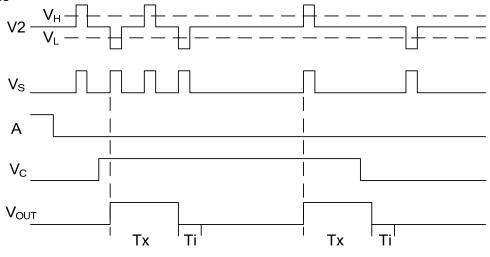
# **■ PIN DESCRIPTIONS**

| PIN NO. | PIN NAME         | I/O | PIN DESCRIPTION                                  |  |  |
|---------|------------------|-----|--------------------------------------------------|--|--|
| 1       | Α                | I   | Retriggerable & non-retriggerable mode select    |  |  |
| 2       | V <sub>OUT</sub> | 0   | Detector output pin (active high)                |  |  |
| 3       | RR1              |     | Output pulse width control (Tx)                  |  |  |
| 4       | RC1              |     | Output pulse width control (Tx)                  |  |  |
| 5       | RC2              |     | Trigger inhibit control (Ti)                     |  |  |
| 6       | RR2              |     | Trigger inhibit control (Ti)                     |  |  |
| 7       | $V_{SS}$         |     | Ground                                           |  |  |
| 8       | VRF              |     | RESET & voltage reference input                  |  |  |
| ٥       | VKF              | Ī   | (normally high. Low=reset)                       |  |  |
| 9       | VC               | ı   | Trigger disable input                            |  |  |
| 9       | VC               | ı   | (VC>0.2Vdd=enable; VC<0.2Vdd=disable)            |  |  |
| 10      | IB               |     | Op-amp input bias current setting                |  |  |
| 11      | $V_{DD}$         |     | Supply voltage                                   |  |  |
| 12      | 2OUT             | 0   | 2 <sup>nd</sup> stage Op-amp output              |  |  |
| 13      | 2IN-             | I   | 2 <sup>nd</sup> stage Op-amp inverting input     |  |  |
| 14      | 1IN+             | I   | 1 <sup>st</sup> stage Op-amp non-inverting input |  |  |
| 15      | 1IN-             | I   | 1 <sup>st</sup> stage Op-amp inverting input     |  |  |
| 16      | 10UT             | 0   | 1 <sup>st</sup> stage Op-amp output              |  |  |

# **■ BLOCK DIAGRAM**



# ■ ABSOLUTE MAXIMUM RATINGS


| PARAMETER                                   | SYMBOL                            | RATINGS                                   | UNIT |
|---------------------------------------------|-----------------------------------|-------------------------------------------|------|
| DC Supply Voltage                           | $V_{DD}$                          | -0.3~6.0                                  | V    |
| Input/ Output Voltage                       | V <sub>IN</sub> /V <sub>OUT</sub> | V <sub>SS</sub> -0.3~V <sub>DD</sub> +0.3 | V    |
| Max. Output Current (V <sub>DD</sub> =5.0V) | I <sub>OUT</sub>                  | 10                                        | mA   |
| Operating Temperature                       | T <sub>OPR</sub>                  | -20~+70                                   | °C   |
| Storage Temperature                         | T <sub>STG</sub>                  | -40~+125                                  | °C   |

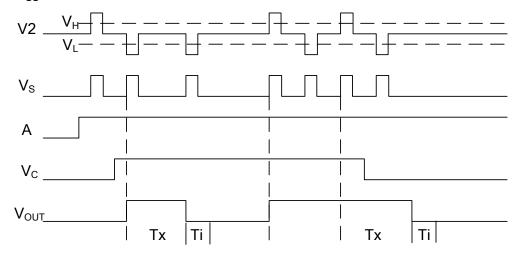
# ■ DC ELECTRICAL CHARACTERISTICS (T<sub>A</sub> =+25°C,unless otherwise specified)

| PARAMETER                                  | SYMBOL          | TEST CONDITIONS                             |                     | MIN  | TYP | MAX  | UNIT |
|--------------------------------------------|-----------------|---------------------------------------------|---------------------|------|-----|------|------|
| DC Supply Voltage                          | $V_{DD}$        |                                             |                     | 3    |     | 5    | V    |
| Average Supply Current                     | I <sub>DD</sub> | No Load                                     | V <sub>DD</sub> =3V |      |     | 50   | μA   |
|                                            |                 |                                             | V <sub>DD</sub> =5V |      |     | 100  |      |
| Op-Amp Input Offset Voltage                | $V_{OS}$        | V <sub>DD</sub> =5V                         |                     |      | 50  | mV   |      |
| Op-Amp Input Offset Current                | Ios             | V <sub>DD</sub> =5V                         |                     |      |     | 50   | nA   |
| Op-Amp Gain                                | $A_{VO}$        | $V_{DD}$ =5V, $R_L$ =1.5M $\Omega$          |                     | 60   |     |      | dB   |
| Op-Amp Common Mode Rejection Ration        | CMRR            | $V_{DD}$ =5V, $R_L$ =1.5M $\Omega$          |                     | 60   |     |      | dB   |
| Op-Amp HIGH Level Output Voltage           | $V_{YH}$        | $V_{DD}$ =5V, R <sub>L</sub> =500KΩ connect |                     | 4.25 |     |      | V    |
| Op-Amp LOW Level Output Voltage            | $V_{YL}$        | to 1/2V <sub>DD</sub>                       |                     |      |     | 0.75 | V    |
| V <sub>C</sub> High Level Input Voltage    | $V_{RH}$        | V <sub>RF</sub> =V <sub>DD</sub> =5V        |                     | 1.1  |     |      | V    |
| V <sub>C</sub> Low Level Input Voltage     | $V_{RL}$        |                                             |                     |      |     | 0.9  | ٧    |
| V <sub>OUT</sub> High Level Output Voltage | $V_{OH}$        | V <sub>DD</sub> =5V, I <sub>OH</sub> =0.5mA |                     | 4    |     |      | ٧    |
| V <sub>OUT</sub> Low Level Output Voltage  | $V_{OL}$        | V <sub>DD</sub> =5V, I <sub>C</sub>         |                     |      | 0.4 | V    |      |
| Pin A High Level Input Voltage             | $V_{AH}$        | V <sub>DD</sub> =5V                         |                     | 3.5  |     |      | V    |
| Pin A Low Level Input Voltage              | $V_{AL}$        | V <sub>DD</sub> =5V                         |                     |      |     | 1.5  | ٧    |

#### ■ FUNCTIONAL DESCRIPTIONS

### 1. Re-Triggerable Mode




Re-Triggerable Waveform

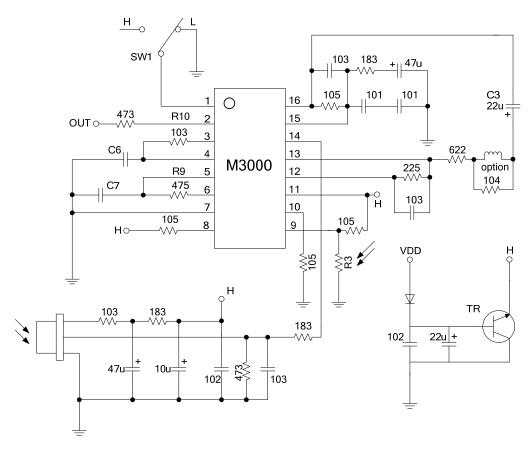
Operational amplifier OP1 composed sensor signal pre-processing circuit. The amplified signal coupled to the operational amplifier OP2, and elevated DC level to VM ( $\approx$ 0.5VDD), The output signal V2 input to Bi-directional level detector(COP1&COP2), detected the effective signal Vs. As the VH $\approx$ 0.7VDD, VL $\approx$ 0.3VDD, while VDD=5V, it is immune to the  $\pm$ 1V noise interference and can improve system reliability.

COP3 is a condition comparator. When the input voltage Vc<VR(≈0.2VDD), COP3 output is low, it disabled the Vs transmission to State Control circuit; When Vc>VR, COP3 output is high, chip access to extension time period.

When pin A connect to "0", any change of V2 have been ignored until the end of Tx period, which called non-retriggerable mode. When the Tx period ended, Vo jump back to the low level, chip access to the lock period Ti. During the Ti period, any changes of V2 can not make Vo jumping to valid state (high level), it can inhibit a variety of interference when the load changed.

#### 2. Non-Retriggerable mode




Non-Retriggerable Waveform

During the time of Vc="0", A="0", signal Vs can not trigger Vo to a valid state; When Vc="1", A="1", Vs can repeatable trigger Vo to the valid state, and keep the state in Tx period.

In the Tx period, if Vs jump to "1", then Vo extend to an another Tx; if Vs keep "1" state, Vo maintains the valid state; if Vs keep "0 "state, after the period of Tx, Vo change to invalid state, and in the Ti time, any change of Vs can not trigger Vo to a valid state.



#### **■ TYPICAL APPLICATIONS CIRCUIT**



NOTE: R3 is a light dependent resistor which has low resistance under strong ambient light. This cause the detector to be operational only when the detection area is sufficient dark.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.