

IGBT Chip in NPT-technology

Features:

- 1700V NPT technology
- 280 µm chip
- short circuit prove
- positive temperature coefficient
- easy paralleling

This chip is used for:

- chip only
- Applications:
- drives

Chip Type	V _{CE}	<i>I</i> c	Die Size	Package
SIGC144T170R2C	1700V	75A	11.98 x 11.98 mm ²	sawn on foil

Mechanical Parameter

	-			
Raster size	11.98 x 11.98			
Emitter pad size	8x (2.98x1.98)			
Gate pad size	1.48 x 0.757	– mm²		
Area total	143.52			
Thickness	280	μm		
Wafer size	150	mm		
Max.possible chips per wafer	93 pcs			
Passivation frontside	Photoimide			
Pad metal	3200 nm AlSiCu			
Backside metal	Ni Ag –system suitable for epoxy and soft solder die bonding			
Die bond	Electrically conductive glue or solder			
Wire bond	Al, <500µm			
Reject ink dot size	Ø 0.65mm ; max 1.2mm			
Recommended storage environment	Store in original container, in dry nitrogen, in dark environment, < 6 month at an ambient temperature of 23°C			

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-Emitter voltage, <i>T</i> _{vj} =25 °C	V _{CE}	1700	V	
DC collector current, limited by $T_{vj max}$	I _C	1)	А	
Pulsed collector current, t_p limited by $T_{vj max}$	I _{c,puls}	225	А	
Gate emitter voltage	V _{GE}	±20	V	
Junction temperature range	T _{vj}	-55 +175	°C	
Operating junction temperature	T _{vj}	-55+150	°C	
Short circuit data ²) V_{GE} = 15V, V_{CC} = 1200V, T_{vj} = 150°C	t _{sc}	10	μs	
Reverse bias safe operating area ²) (RBSOA)	$I_{C,max} = 150A, V_{CE,max} = 1700V$ $T_{vj} \le 150^{\circ}C$			

¹⁾ depending on thermal properties of assembly

²) not subject to production test - verified by design/characterization

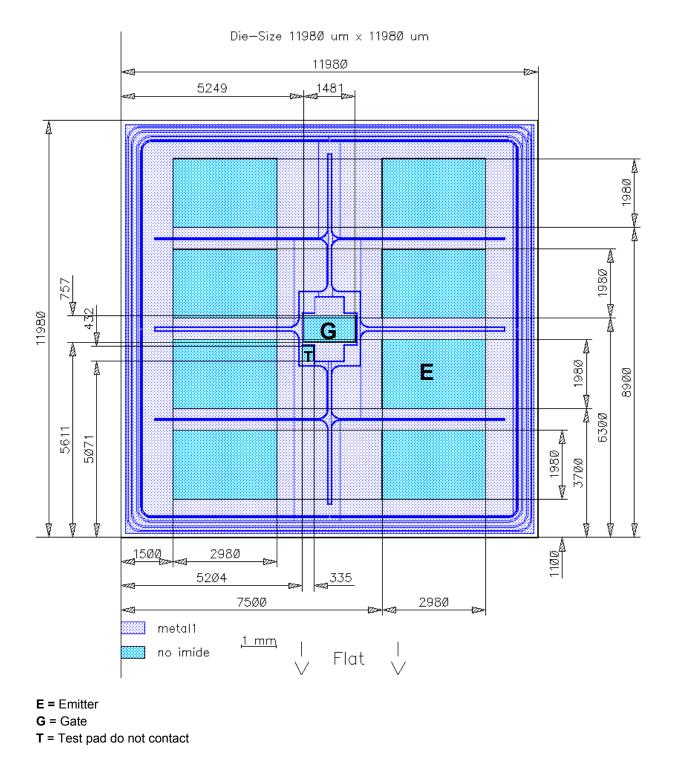
Value Symbol Conditions Unit Parameter min. typ. max. $V_{GE}=0V$, $I_C=5$ mA Collector-Emitter breakdown voltage 1700 V_{(BR)CES} V_{CEsat} *V*_{GE}=15V, *I*_C=75A 2.2 V Collector-Emitter saturation voltage 2.7 3.2 Gate-Emitter threshold voltage $I_{\rm C}$ =3.3mA , $V_{\rm GE}$ = $V_{\rm CE}$ 4.5 5.5 $V_{GE(th)}$ 6.5 Zero gate voltage collector current V_{CE}=1700V , V_{GE}=0V 18 μΑ **I**_{CES} $V_{CE}=0V$, $V_{GE}=20V$ Gate-Emitter leakage current 480 nA I_{GES} Integrated gate resistor r_G 5 Ω

Static Characteristic (tested on wafer), T_{vi} =25 °C

Dynamic Characteristic (not subject to production test - verified by design / characterization),

*T*_{vi} =25 °C

Parameter	Symbol	Conditions	Value			Unit
Farameter	Symbol	Conditions	min.	typ.	max.	Unit
Input capacitance	Cies	V _{CE} =25V,		5000		
Output capacitance	Coes	V _{GE} =0V,		tbd		pF
Reverse transfer capacitance	Cres	<i>f</i> =1MHz		tbd		



Further Electrical Characteristic

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

Chip Drawing

Description

AQL 0,65 for visual inspection according to failure catalogue

Electrostatic Discharge Sensitive Device according to MIL-STD 883

Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support devices or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.