MAXIM Voltage Operational Amplifier

\qquad General Description
The OPO7 is a precision operational amplifier with very low input offset voltage ($10 \mu \mathrm{~V}$ typ., $25 \mu \mathrm{~V}$ max. for the OPO 7 A), input offset drift of $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and low input bias current of 0.7 nA . The wide input common mode range of $\pm 14 \mathrm{~V}$ combined with high CMRR of 110dB minimum (OP07A), plus high input impedance and high open-loop gain make these devices particularly useful for high-gain instrumentation applications. The excellent linearity and gain accuracy are maintained at high open-loop gains, over both time and temperature. The OP07 has become an industry standard and Maxim's reliability and quality are added advantages.

Applications
Precision Amplifiers
Thermocouple Amplifiers
Low Level Signal Processing
Medical Instrumentation
Strain Gauge Amplifiers
High Accuracy Data Acquisition
Pin Configuration

Foatures
Ultra Low Offset Voltage: $10 \mu \mathrm{~V}$
Ultra Low Offset Voltage Drít: $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Ultra Stable vs. Time: $0.2 \mu \mathrm{~V} / \mathrm{Month}$
Ultra Low Noise: $0.35 \mu \mathrm{~V}_{p-\mathrm{p}}$
Wide Supply Voltage: $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
High Common Mode Input: $\pm 14 \mathrm{~V}$
No External Components Required
- Fits AD510, 725, 108A/308A, 741 Sockets

Ordering Information

PART	TEMP. RANGE	PACKAGE
OP07AJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99
OP07J	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99
OP07EJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
OP07CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
OP07DJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
OP07EP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic Dip
OP07CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic Dip
OP07DP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic Dip
OP07AZ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead Hermetic Dip
OP07Z	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead Hermetic Dip
OP07EZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Hermetic Dip
OP07CZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Hermetic Dip
OP07ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
OP07CCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
OP07DCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
OP07D/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice

* Contact factory for dice specifications

Typical Operating Circuit

Low Offset

 Voltage Operational AmplifierABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) . ± 2
Internal Power Dissipation \qquad 500 mW
TO-99(J) - derate at $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+80^{\circ} \mathrm{C}$
Hermetic $\operatorname{Dip}(\mathrm{Z})$ - derate at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$
Plastic Dip (P) - derate at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+36^{\circ} \mathrm{C}$
Small Outline - derate at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+55^{\circ} \mathrm{C}$
Differential Input Voltage \qquad $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) \qquad

Note 1: For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional peration of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	OP07A			OP07			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{OS}	(Note 2)		10	25		30	75	$\mu \mathrm{V}$
Long Term Input Offset Voltage Stability	$\mathrm{V}_{\text {OS }} /$ Time	(Note 3)		0.2	1.0		0.2	1.0	Month
Input Offset Current	Ios			0.3	2.0		0.4	2.8	nA
Input Bias Current	I_{B}			± 0.7	± 2.0		± 1.0	± 3.0	nA
Input Noise Voltage	$e_{\text {N P-P }}$	0.1 Hz to 10 Hz (Note 4)		0.35	0.6		0.35	0.6	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Voltage Density	e_{N}	$\begin{aligned} & f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 4) \\ & f_{\mathrm{O}}=100 \mathrm{~Hz} \text { (Note 4) } \\ & f_{\mathrm{O}}=1000 \mathrm{~Hz} \text { (Note 4) } \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \\ \hline \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{I}_{\mathrm{NP-P}}$	0.1 Hz to 10 Hz (Note 4)		14	30		14	30	$p A_{\text {P-P }}$
Input Noise Current Density	I_{N}	$\begin{aligned} & f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 4) \\ & f_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 4) \\ & f_{\mathrm{O}}=1000 \mathrm{~Hz} \text { (Note 4) } \end{aligned}$		$\begin{aligned} & \hline 0.32 \\ & 0.14 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \end{aligned}$	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Input Resistance Differential-Mode	$\mathrm{R}_{\mathbf{I N}}$	(Note 5)	30	80		20	60		$\mathrm{M} \Omega$
Input Resistance Common-Mode	$\mathrm{R}_{\text {INCM }}$			200			200		G Ω
Input Voltage Range	IVR	.	± 13	± 14		± 13	± 14		V
Common-Mode Rejection Ratio	CMRR	$V_{C M}= \pm 13 \mathrm{~V}$	110	126		110	126		dB
Power Supply Rejection Ratio	PSAR	$V_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		4	10		4	10	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\begin{aligned} & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V} \\ & \left.\mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { (Note } 5\right) \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$		$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$		V / mV
Output Voltage Swing	- V_{O}	$\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 12.5 \\ \pm 12.0 \\ \pm 10.5 \end{array}$	$\begin{aligned} & \pm 13.0 \\ & \pm 12.8 \\ & \pm 12.0 \end{aligned}$		$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \\ & \pm 10.5 \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & \pm 12.8 \\ & \pm 12.0 \end{aligned}$		V

Note 2: OP07A grade $V_{O S}$ is measured one minute after application of power. For all other grades $V_{O S}$ is measured approximately 0.5 seconds after application of power.
Note 3: Long-Term Input Offset Voltage Stability refers to the average trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in $V_{o s}$ during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$. Parameter is sample tested.
Note 4: Sample tested.
Note 5: Guaranteed by design.

Low Offset Voltage Operational Amplifier

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, uniess otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	OP07A			OP07			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 6)	0.1	0.3		0.1	0.3		$\mathrm{V} / \mu \mathrm{S}$
Closed-Loop Bandwidth	BW	$A_{\text {VCL }}=+1 \mathrm{~V}($ Note 6)	0.4	0.6		0.4	0.6		MHz
Open-Loop Output Resistance	R_{O}	$V_{O}=0 V, I_{0}=0$		60			60		Ω
Power Consumption	$P_{\text {D }}$	$V_{S}= \pm 15 \mathrm{~V}$, No Load $V_{S}= \pm 3 \mathrm{~V}$, No Load		$\begin{gathered} 75 \\ 4 \end{gathered}$	$\begin{gathered} 120 \\ 6 \end{gathered}$		$\begin{gathered} 75 \\ 4 \end{gathered}$	$\begin{gathered} 120 \\ 6 \end{gathered}$	mW
Offset Adjustment Range		$R_{P}=20 \mathrm{k} \Omega$		± 4			± 4		mV

Note 6: Sample tested.

ELECTRICAL CHARACTERISTICS
$V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	OP07A			OP07			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$V_{\text {Os }}$	(Note 7)		25	60		60	200	$\mu \mathrm{V}$
Average Temperature Coefficient of Input Offset Voltage	TCV os	(Note 8)		0.2	0.6		0.3	1.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	I_{os}			0.8	4.0		1.2	5.6	nA
Average Input Offset Current Drift	$\mathrm{TCl}_{\text {os }}$	(Note 8)		5	25		8	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}			± 1.0	± 4.0		± 2.0	± 6.0	nA
Average Input Bias Current Drift	$\mathrm{TCl}_{\mathrm{B}}$	(Note 8)		8	25		13	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Voltage Range	IVR		± 13	± 13.5		± 13	± 13.5		V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	106	123		106	123		dB
Power Supply Rejection Ratio	PSRR	$V_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		5	20		5	20	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	200	400		150	400		V / mV
Output Voltage Swing	Vo	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12.0	± 12.6		± 12.0	± 12.6		V

Note 7: OP07A grade Offset Voltage is measured one minute after application of power. For all other grades $V_{0 s}$ is measured 0.5 seconds after power on.
Note 8: Sample tested.

Low Offset Voltage Operational Amplifier

ELECTRICAL CHARACTERISTICS
$\left(V_{S}= \pm 15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	OP07E			OP07C			OP07D			
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	$\mathrm{V}_{\text {Os }}$	(Note 1)		30	75		60	150		60	150	$\mu \mathrm{V}$
Long Term Input Offset Voltage Stability	$V_{\text {OS }} /$ Time	(Note 2)		0.3	1.5		0.4	2.0		0.5	3.0	$\mu \mathrm{V} /$ Month
Input Offset Current	$\mathrm{I}_{\text {OS }}$			0.5	3.8		0.8	6.0		0.8	6.0	nA
Input Bias Current	I_{B}			± 1.2	± 4.0		± 1.8	± 7.0		± 2.0	± 12.0	nA
Input Noise Voltage	$\mathrm{e}_{\mathrm{NP-P}}$	0.1 Hz to 10 Hz (Note 3)		0.35	0.6		0.38	0.65		0.38	0.65	$\mu \mathrm{V}_{\text {P-P }}$
Input Noise Voltage Density	e_{N}	$\begin{aligned} & f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 3) \\ & f_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note 3) } \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \end{aligned}$		$\begin{gathered} 10.5 \\ 10.2 \\ 9.8 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 13.5 \\ & 11.5 \end{aligned}$		$\begin{gathered} 10.5 \\ 10.3 \\ 9.8 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 13.5 \\ & 11.5 \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$I_{\text {N P-P }}$	0.1 Hz to 10 Hz (Note 3)		14	30		15	35		15	35	$p A_{p-p}$
Input Noise Current Density	I_{N}	$\begin{aligned} & \mathbf{f}_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 3) \\ & f_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note } 3) \end{aligned}$		$\begin{aligned} & \hline 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.27 \\ & 0.18 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.27 \\ & 0.18 \\ & \hline \end{aligned}$	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Input Resistance Differential-Mode	$\mathrm{R}_{\text {IN }}$	(Note 4)	15	50		8	33		7	31		$\mathrm{M} \Omega$
Input Resistance Common-Mode	$\mathrm{R}_{\text {INCM }}$			160			120			120		$G \Omega$
Input Voltage Range	IVR		± 13	± 14		± 13	± 14		± 13	± 14		V
Common-Mode Rejection Ratio	CMRR	$V_{C M}= \pm 13 \mathrm{~V}$	106	123		100	120		94	110		dB
Power Supply Rejection Ratio	PSRR	$V_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		5	20		7	32		7	32	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\begin{aligned} & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { (Note } 5 \text {) } \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$		$\begin{aligned} & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$		120	$\begin{aligned} & 400 \\ & 400 \end{aligned}$		V / mV
Output Voltage Swing	V_{0}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \pm 12.5 \\ \pm 12.0 \\ \pm 10.5 \\ \hline \end{array}$	$\begin{array}{r} \pm 13.0 \\ \pm 12.8 \\ \pm 12.0 \end{array}$		$\pm \begin{aligned} & \pm 12.0 \\ & \pm 11.5 \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & \pm 12.8 \\ & \pm 12.0 \end{aligned}$		$\begin{aligned} & \pm 12.0 \\ & \pm 11.5 \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & \pm 12.8 \\ & \pm 12.0 \end{aligned}$		V
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 3)	0.1	0.3		0.1	0.3		0.1	0.3		$\mathrm{V} / \mu \mathrm{S}$
Closed-Loop Bandwidth	BW	$A_{V C L}=+1 \mathrm{~V}($ Note 3)	0.4	0.6		0.4	0.6		0.4	0.6		MHz
Open-Loop Output Resistance	R_{0}	$V_{O}=0 V, I_{0}=0$		60			60			60		Ω
Power Consumption	Pd	$V_{S}= \pm 15 \mathrm{~V}$, No Load $V_{S}= \pm 3 V$, No Load		$\begin{gathered} 75 \\ 4 \end{gathered}$	$\begin{gathered} 120 \\ 6 \end{gathered}$		$\begin{gathered} 80 \\ 4 \end{gathered}$	$\begin{gathered} 150 \\ 8 \end{gathered}$		$\begin{gathered} 80 \\ 4 \end{gathered}$	$\begin{gathered} 150 \\ 8 \end{gathered}$	mW
Offset Adjustment Range		$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4			± 4			± 4		mV

Note 1: Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
Note 2. Long-Term Input Offset Stability refers to the average trend line of Vos vs Time over extended periods after the first 30 days of operation.
Note 3. Sample tested
Note 4. Guaranteed by design.
\qquad

Low Offset Voltage Operational Amplifier

ELECTRICAL CHARACTERISTICS
$V_{S}= \pm 15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	OP07E			OP07C			OP07D			
			MIN.	TYP.	MAX.	MIN.	TYP.	Max.	MIN.	TYP.	MAX.	
Input Offset Voltage	V_{OS}	(Note 5)		45	130		85	250		85	250	$\mu \mathrm{V}$
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{TCV}_{\text {Os }}$	(Note 6)		0.3	1.3		0.4	1.8		0.7	2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	Ios			0.9	5.3		1.6	8.0		1.6	8.0	nA
Average Input Offset Current Drift	$\mathrm{TCl}_{\mathrm{OS}}$	(Note 6)		8	35		12	50		12	50	pA ${ }^{\circ}{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}		.	± 1.5	± 5.5		± 2.2	± 9.0	-	± 3.0	± 14	nA
Average Input Bias Current Drift	$\mathrm{TCl}_{\mathrm{B}}$	(Note 6)		13	35		18	50		18	50	$\mathrm{pA}^{\circ} \mathrm{C}$
Input Voltage Range	IVR		± 13.0	± 13.5		± 13.0	± 13.5		± 13.0	± 13.5		V
Common-Mode Rejection Ratio	CMRR	$V_{\mathrm{GM}}= \pm 13 \mathrm{~V}$	103	123		97	120		94	106		dB
Power Supply Rejection Ratio	PSRR	$V_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$			32		10	51		10	51	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	180	400		100	400		100	400		V / mV
Output Voltage Swing	V_{0}	$R_{L} \geq 2 \mathrm{k} \Omega$	± 12.0	± 12.6		± 11.0	± 12.6		± 11.0	± 12.6		V

Note 5: Input Offset Voltage is measured 0.5 seconds after application of power.
Note 6: Sample tested.

Low Offset Voltage Operational Amplifier

OPO7

CMRR vs. FREOUENCY

PSRR vE FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

__Chip Topography

6 \qquad

Low Offset Voltage Operational Amplifier

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
E	0.150	0.157	3.80	
e	0.050		4.00	
H	0.228	0.244	1.27	
L	0.016	0.80	6.20	

Narrow SO SMALL-OUTLINE
PACKAGE
(0.150 in.)

DIM	PINS	INCHES		MILLMETERS		
		MIN	MAX	MIN	MAX	
D	8	0.189	0.197	4.80	5.00	
D	14	0.337	0.344	8.55	8.75	
D	16	0.386	0.394	9.80	10.00	
$21-0041 \mathrm{~A}$						

Low Offset
 Voltage Operational Amplifier

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabrlel Drive, Sunnyvale, CA 94086 (408) 737-7600

[^0]
[^0]: c) 1995 Maxim Integrated Products

 Printed USA
 MAXIM is a registered trademark of Maxim Integrated Products.

