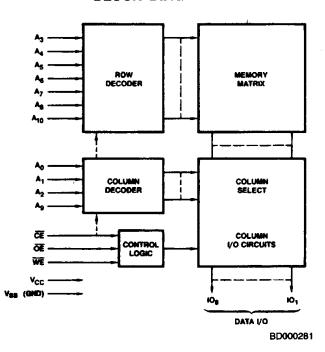
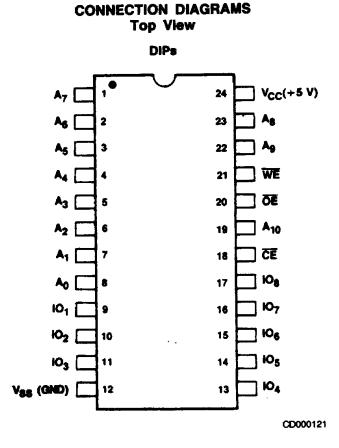
Am9128 2048x8 Static RAM


DISTINCTIVE CHARACTERISTICS

- Logic voltage levels compatible with TTL
 - Three-state output buffers and common I/O
- ICC Max., as low as 100 mA

- t_{AA}/t_{ACS} as low as 70 ns
- · Power-Down mode (ISB as low as 15 mA)

GENERAL DESCRIPTION


The Am9128 is a 16,384-bit Static Random = Access Read-write Memory organized as 2048 words of 8 bits. It uses fully static circuitry, requiring no clocks or refresh to operate. Directly TTL-compatible inputs and outputs and operation from a single +5 V supply simplify system designs. Common data I/O pins using three-state outputs are provided. The Am9128 is available in an industrystandard 24-pin DIP package with 0.6-inch pin row spacing. The Am9128 uses the JEDEC standard pinout for byte-wide memories (compatible to 16K EPROMs).

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Nu	Am9128-70	Am9128-90	Am9128-10	Am9128-12	Am9128-15	Am9128-20	
Maximum Access Time (ns)		70	90	100	120	150	200
Maximum Operat-	0 to 70°C	140	N/A	120	N/A	100	140
ing Current (mA)	-55° to 125°C	N/A	180	N/A	150	150	150
Maximum Standby	v 0° to 70°C 30		N/A	15	N/A	15	30
Current (mA)	-55° to 125°C	N/A	30	N/A	30	30	30

Address Designators						
External	Internal					
A ₃	AX ₀					
A4	AX ₁					
A5	AX2					
A ₆	AX3					
A7	AX4					
A ₈	AX5					
A ₁₀	AX6					
A ₀	AY ₀					
A1	AY1					
A ₂	AY2					
Ag	AY ₃					

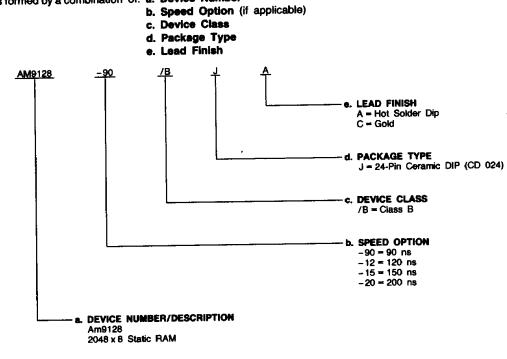
DIE SIZE: 0.162" x 0.240"

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number b. Speed Option (if applicable) c. Package Type d. Temperature Range e. Optional Processing AM9128 - 70 Ρ <u>c</u> в . OPTIONAL PROCESSING Blank = Standard processing B = Burn-in d. TEMPERATURE RANGE C = Commercial (0 to + 70°C) E = Extended Commercial (-55 to +125°C) c. PACKAGE TYPE P = 24-Pin Plastic DIP (PD 024) D = 24-Pin Ceramic DIP (CD 024) **b. SPEED OPTION** -70 = 70 ns -10 = 100 ns -15 = 150 ns -20 = 200 ns a. DEVICE NUMBER/DESCRIPTION Am9128 2048 x 8 Static RAM

Valid	Combinations
AM9128-70	
AM9128-10	PC, DC, DCB, DE,
AM9128-15	DEB
AM9128-20	


Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: **a. Device Number**

Valid Combinations							
AM9128-90							
AM9128-12	/BJA, /BJC						
AM9128-15							
AM9128-20							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11

PIN DESCRIPTION

A₀-A₁₀ Addresses (Input)

The 10-bit field presented at the address inputs selects one of the 2048 memory locations to be read from — or written into — via the data lines.

I/O1 – I/O8 Data In/Out Port (Input/Output) If WE is LOW, the data represented on the I/O lines can be written into the selected memory location. If WE is HIGH, the I/O lines represent the data read from the selected memory location.

CE Chip Enable (Input, Active LOW)

Read and Write cycles can be executed only when \overrightarrow{CE} is LOW.

WE Write Enable (Input, Active LOW) Data is written into the memory if WE is LOW and read from the memory if WE is HIGH.

OE Output Enable (Input, Active LOW) Read cycles can be executed only when OE is LOW.

Storage Temperature	65 to +150°C
Ambient Temperature with	
Power Applied	55 to +125°C
Supply Voltage	0.5 V to +7.0 V
Signal Voltage with	
Respect to Ground	3.0 V to +7.0 V
Power Dissipation	1.0 W
DC Output Current	

*Maximum ratings are to be for system design reference, parameters given may not be 100% tested by AMD.

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES (Note 3)

Commercial (C) Devices	
Ambient Temperature (TA)0 to +70°C	
Supply Voltage (V _{CC}) +4.5 V to +5.5 V	
Military* (M) and Extended Commercial (E) Devices	
Case Temperature (TA)55 to +125°C	
Supply Voltage (V _{CC}) +4.5 V to +5.5 V	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted) (Note 3)

			Am9128-90 Am9128-10		Am9128-15		Am9128-70 Am9128-12 Am9128-20			
Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
IOH	Output HIGH Current VOH = 2.4 V VCC = 4.5 V		-2		-2		-2		mA	
lol	Output LOW Current	V _{OL} = 0.4 V	VCC = 4.5 V	4		4		4		mA
VIH	Input HIGH Voltage			2.0	V _{CC} +1.0	2.0	V _{CC} +1.0	2.0	V _{CC} + 1.0	v
VIL	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	v
hx.	Input Load Current	$V_{SS} \leq V_I \leq V_{CC}$			10		10		10	Aμ
loz	Output Leakage Current	V _{SS} ≤ V _O ≤ V _{CC} Output Disabled			10		10		10	μA
C _{IN}	Input Capacitance (Note 12)	Test Frequency = 1.0 MHz,			6		6		6	
C _{I/O}	Input/Output Capacitance (Note 12)	$T_A = 25^{\circ}C$, All pins at 0	V _{CC} = 5.0 V		7		7		7 pr	pF
<u> </u>			COM'L		120		100	140		
loc	V _{CC} Operating Supply Current	Max. V _{CC} , CE ≤ V _{IL} Outputs Open	MIL/E- COM'L		180		150	150		mA
			COM'L		15		15	30		
ISB	Automatic CE Power Down Current	Max. V _{CC} , CE≥ViH	MIL/E- COM'L		30		30	30		mA
· · · · · · · ·			COM'L		15		15	30		
ipo	Peak Power On Current (Note 12)	$V_{CC} = GND$ to V_{CC} Max. CE $\ge V_{IH}$ (Note 2)	MIL/E- COM'L		30		30	30		mA

Notes: 1. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

A pull up resistor to V_{CC} on the CE input is required during power up to keep the device deselected, otherwise Ip_O will exceed values given.
For test and correlation purposes, ambient temperature is defined as the "Instant-on" case temperature.

At any given temperature and voltage condition, t_{HZ} is less than t_{LZ}. WE is HIGH for read cycle. 5

6. Device is continuously selected, $\overline{CE} = V_{|L}$. 7. Address valid prior to or coincident with \overline{CE} transition LOW. 8. $\overline{OE} = V_{|L}$.

9. CL = 30 pF

10. Transition is measured from 1.5 V on the input to VOH - 500 mV and VOL+ 500 mV on the outputs using the load shown in Switching Test Circuits. $C_L = 5 \text{ pF}$.

11. The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling, and use to avoid exposure to excessive voltages.

12. The parameter is guaranteed by characterization, but is not tested.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted.)

Am9128-70, -90, -10

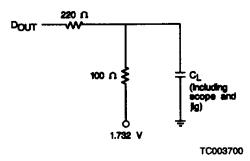
				Am91	28-70	Am9128-90		Am9128-10		
No.	No. Symbol Description			Min.	Max.	Min.	Nax.	Min.	Max.	Unit
RE	AD CYCLE									
1	tRC	Read Cycle Time		70		90		100		ns
2	tacc	Address Access Time (Not	ie 9)		70		90		100	ns
3	tacs	Chip Select Access Time	(Note 9)		70		90		100	ns
		Output Enable Time	COM'L		40		N/A		50	ns
4	4 toe (Note 9)		MIL		N/A		50		N/A	
5	tон	Output Hold Time from Ad	dress Change	5		5		5		ns
6	tcLZ	Output in Low-Z from CE (Notes 4, 10, 12)		5		5		5		ns
7	tcHZ	Output in Hi-Z from CE (Notes 4, 10, 12)			35		40		40	ns
8	toLZ	Output in Low-Z from OE (Notes 4, 10, 12)		5		5		5		ns
9	toHz	Output in Hi-Z from OE (Notes 4, 10, 12)			30		35		35	ns
10	teu	Chip Selection to Power-Up Time (Note 12)		0		0	I	0		ns
11	ten	Chip Deselection to Power-Down Time (Note 12)			40		45		50	ាន
	RITE CYCLE									
12	twc	Write Cycle Time		70		90		100		ns
	<u> </u>	Chip Selection to	0 to +70°C	60		N/A	T	90		ns
13	lcw	End of Write (Note 1)	-55 to -125°C	N/A		80		N/A		
14	tas	Address Setup Time		5	1	10		10		ns
15	twp	Write Pulse Width (Note 1)	40		55		60		ns
16	twp	Write Recovery Time	<u> </u>	5		5		5		ns
17	tos	Data Setup Time		30		35		40		ns
18		Data Hold Time		5	1	5	T	5		กร
19	t _{DH}	Output in Low-Z from WE	(Notes 4, 10, 12)	5		5		5		ns
		Output in Hi-Z from WE (_	30	1	35		35	ns
20	twhz	Address to End of Write		65	+	80	1	60		ns
21	taw .	NUCLESS ID END OF WHILE								-

Notes: See notes following DC Characteristics table.

4

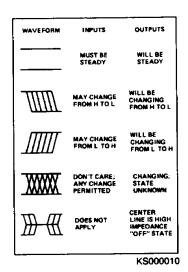
SWITCHING CHARACTERISTICS (Cont'd.)

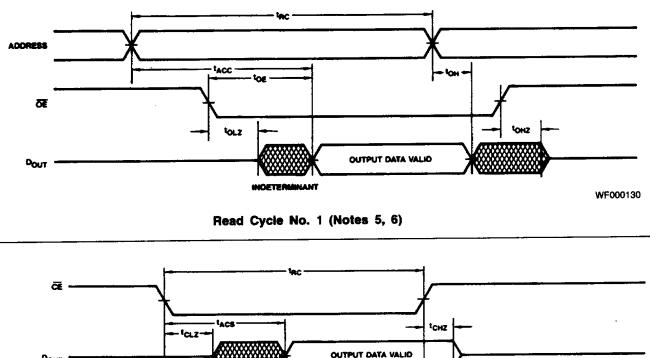
Am9128-12, -15, -20

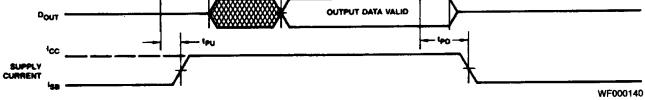

				Am9128-12		Am91	26-15	Am9128-20		
No.	Parameter Symbol			Min.	Max.	Min.	Max.	Min.	Max.	Unit
RE	AD CYCLE									
1	tac	Read Cycle Time		120		150		200		ns
2	tACC	Address Access Time (Not	ie 9)		120		150		200	ns
3	tacs	Chip Select Access Time ((Note 9)		120		150		200	ns
		Output Enable Time	COMIL	_	N/A		60		70	ns
4	toe.	(Note 9)	MIL		70		70		80	
5	tон	Output Hold Time from Ad	dress Change	5		5		5		ns
6	tCLZ	Output in Low-Z from CE	(Notes 4, 10, 12)	5		5		5		ns
7	tcHz	Output in Hi-Z from CE (Notes 4, 10, 12)			50		55		55	ns
8	tolz	Output in Low-Z from OE (Notes 4, 10, 12)		5		5		5		ns
9	tонz	Output in Hi-Z from OE (Notes 4, 10, 12)			45		50		50	ns
10	teu	Chip Selection to Power-Up Time (Note 12)		0		0		0		ns
11	ten	Chip Deselection to Power-Down Time (Note 12)			55		60		60	N 8
WF	ITE CYCLE									
12	twc	Write Cycle Time		120		150		200		ns
		Chip Selection to	COM'L	N/A		120		150		ns
13	tow	End of Write (Note 1)	MIL	105		130		160		
14	tas	Address Setup Time	1	10		20		20		ns
15	twp	Write Pulse Width (Note 1)	70		85		100		ns
16	twa	Write Recovery Time		5	1	5	ſ	5		ns
17	tos	Data Setup Time		45	1	50	Γ	60		ns
18	t _{DH}	Data Hold Time		5		5		5		ns
19	twiz	Output in Low-Z from WE	(Notes 4, 10, 12)	5		5		5		ns
20	twhz	Output in Hi-Z from WE (f	Votes 4, 10, 12)		50		50		50	ns
21	taw	Address to End of Write		105	T	120	1	120		ns

Notes: See notes following DC Characteristics table.

SWITCHING TEST CONDITIONS

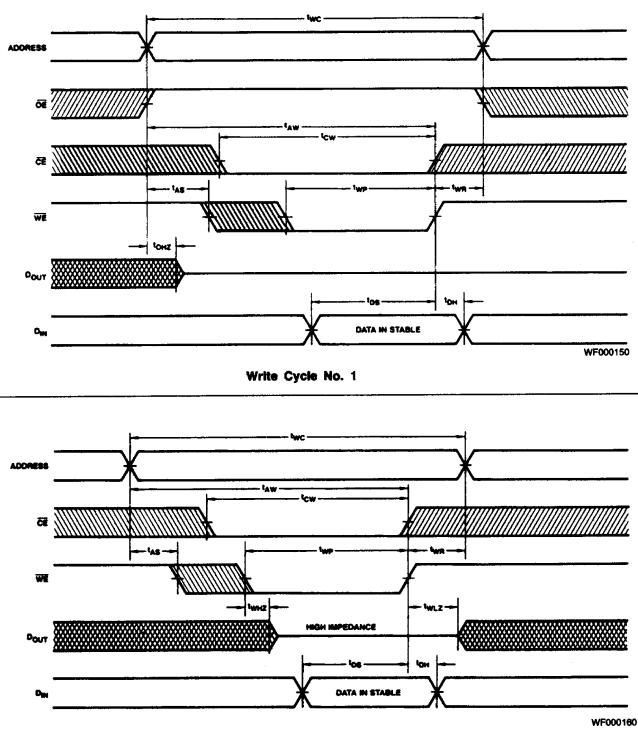

Input Pulse Levels	.4 to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Reference Levels	1.4 V
Output Timing Reference Levels	1.4 V


SWITCHING TEST CIRCUIT



SWITCHING WAVEFORMS

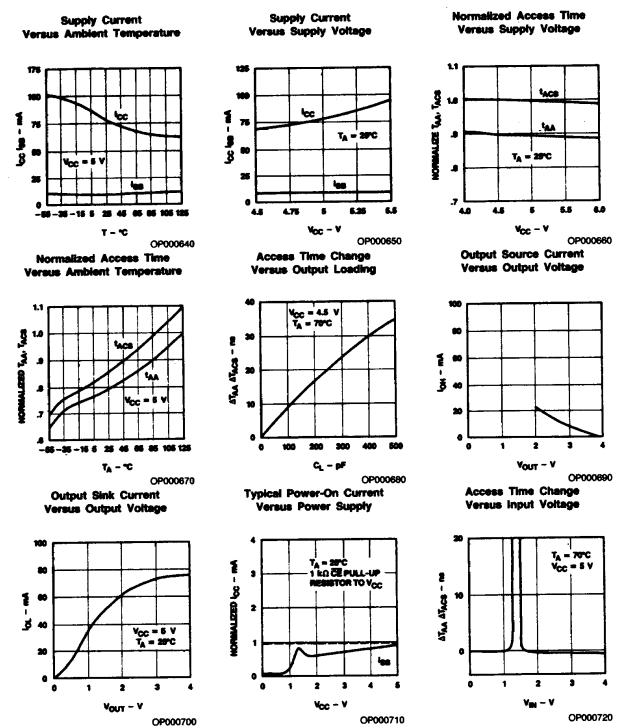
KEY TO SWITCHING WAVEFORMS



Read Cycle No. 2 (Notes 5, 7, 8)

Notes: See notes following DC Characteristics table.

Δ


SWITCHING WAVEFORMS (Cont'd.)

Write Cycle No. 2 (Notes 7, 8)

Notes: See notes following DC Characteristics table.

TYPICAL PERFORMANCE CURVES

4