CXA1008P/1009P

High-speed Sample and Hold Amplifiers

Description

CXA1008P/1009P are bipolar IC's developed for the purpose of sample holding video signals and other signals at high-speed.

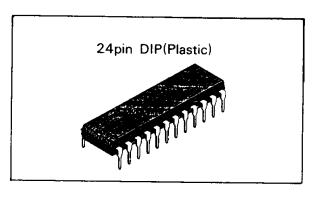
Features

Maximum sampling frequency

CXA1008P 35 MHz CXA1009P 18 MHz

•Linearity 0.08% (Typ.)
•Clock input level ECL compatible

Low power consumption


CXA1008P 680 mW (Typ.) CXA1009P 420 mW (Typ.)

Structure

Bipolar silicon monolithic IC.

Applications

- A/D converter and other analog signal processing
- Other general applications.

Function

High-speed hold circuit, wide band 6 dB amplifier, A/D reference power supply, A/D clock output circuit.

Block Diagram

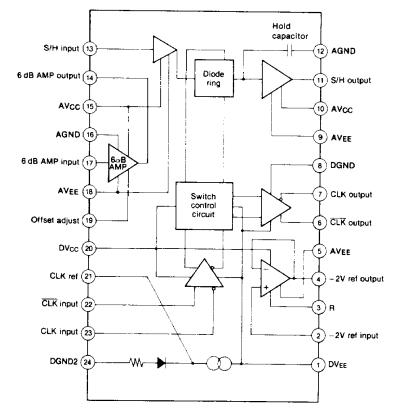


Fig. 1

E89641-HP

Absolute Maximum Ratings (T_a = 25°C)

Supply voltage	V_{GG}	+ 5.5	٧
	V_{FE}	-6.0	٧
Operating temperature	Topr	-20 to +75	°C
•Storage temperature	Tstg	-55 to $+150$	°C
•Allowable power dissipation	P_{D}	1.2	W

Recommended Operating Conditions

•Supply voltage
$$\begin{array}{ccc} \text{V}_{\text{CC}} & +4.75 \text{ to } 5.25 \text{V} \\ \text{V}_{\text{EE}} & -4.75 \text{ to } -5.45 \text{V} \end{array}$$

Pin Description

No.	Symbol	Equivalent circuit	Description
1	DVEE		Digital V _{EE} (– 5V)
2	– 2V ref input	② O AVEE	reference voltage input for A/D converter
3	R	→ DV _{cc} 4	Pulldown terminal for external R (30Ω typically)
4	- 2V ref output	20Ω \$	reference voltage output for A/D converter
5	AVEE		Analog V _{EE} (-5V)
6	CLK output	DGND DVcc	CLK output for A/D converter
7	CLK output	7kΩ (6) (7)	CLK output for A/D converter
8	DGND		Digital GND
9	AVEE		Analog V _{EE} (-5V)
10	AVcc		Analog V _{CC} (+5V)

No.	Symbol	Equivalent circuit	Description
11	S/H output	12.5Ω O AVEE	S/H output
12	AGND		Analog GND
13	S/H input	AV _{CC} AV _{EE}	S/H input
14	6dB AMP output	O AVcc (14) O AVEE	Olutput terminal of 6dB amplifier
15	AV _{CC}		Analog Vcc (+5V)
16	AGND		Analog GND

No.	Symbol	Equivalent circuit	Description
17	6dB AMP input	AV _{cc}	6dB AMP input
18	AVEE	17 AGND AGND	Analog V _{EE} (-5V)
19	offset adjust	AGND	6dB AMP DC offset adjust, terminal
20	DVcc		Digital Vcc (+5V)
21	CLK ref	DVcc MDGND -1.2V DVcc DVcc DVcc DVcc	CLK reference output
22	CLK input	②23 23	CLK input Note: connect to ② PIN or input ECL CLK signal
23	CLK input	DVEE	CLK input (Note: input ECL) CLK signal
24	DGND		Digital GND

SONY®

CXA1008P Electrical Characteristics (Ta = 25 °C, V_{CC} = +5V, V_{EE} = -5V) S/H section (see Fig. 3)

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
		ViH	-0.9	-0.8		٧
Digital input voltage		VIL		- 1.6	- 1.5	٧
CLK Reference voltage (pin 21)		VCLKREF	- 1.3	- 1.2	- 1.1	٧
Analog input voltage range	△V < 1.2V *1	Vins	-3	•	3	٧
Output voltage range		Vouts	-3		3	٧
		lcc	48	60	78	mA
Power Supply	without -2V ref.	I _{EE1}	48	60	78	mA
	with $-2V$ ref. $R_{LI} = 50\Omega *2$	I _{EE2}	80	100	125	mA
Input bias current	$-2V < V_{in} < 2V$	IBiass		15	30	μΑ
Output impedance		Zos		20	40	Ω
Voltage gain ratio		Gvs	0.99	1.0	1.01	
Full power bandwidth	$V_{in} = 2V_{p-p} (-3dB)$	BW		12	! !	MHz
Power supply rejection ratio		SVRs		- 40	: 	dB
Hold mode feed through	fin = 4MHz Vin = 1 Vp-p, CLK open	нмтн		-50	- 40	dB
Clock leak	$V_{in} = 0V$	CLLEAK		10	50	mV
Linearity	fin = 19.53kHz (10/512MHz) f _{CLK} = 10MHz * 3	Lin		0.08	0.15	%
Hold mode droop	input voltage range, 0 to -2V	HMDR		2	20	mV/μ
Acquisition time	△V = 1.2V	Taq		8	12	ns
Settling time	Settle to ±0.2% of F.S. see the Timing Chart	T _{set}		25		ns
DC offset voltage	f _{CLK} = 5MHz	Voffset	ļ	± 15	± 100	mV
Maximum sampling frequency		folkh	35	ļ	 	MHz
Minimum sampling frequency		folkl			5	MHz
Differential gain (D.G.)	Vin = NTSC	DG		0.5	1.0	%
Differential phase (D.P.)	40 IRE mode ramp. f _{CLK} = 20MHz	DP		0.5	1.0	deg

 $(R_{L1} = 50\Omega, see Fig. 3)$

CXA1009P

Electrical Characteristics (Ta = 25°C, $V_{CC} = +5V$, $V_{EE} = -5V$) S/H section (see Fig. 3)

ltem	Condition	Symbol	Min.	Тур.	Max.	Unit
Digital input voltage		ViH	- 0.9	-0.8		٧
		VIL		- 1.6	-1.5	V
CLK Reference voltage (pin 21)		VCLKREF	-1.3	-1.2	-1.1	V
Analog input voltage range	△V < 1.2V *1	VINS	-3	† i	3	V
Output voltage range		Vouts	- 3	†·	3	V
		Icc	25	35	45	mA
Power supply	without -2V ref.	lee1	25	35	45	mA
	with $-2V$ ref. $R_{LI} = 50\Omega *2$	I _{EE2}	60	75	98	mA
Input bias current	-2V < Vin < 2V	Biass		9	18	μΑ
Output impedance		Zos		20	40	Ω
Voltage gain ratio		Gvs	0.99	1.0	1.01	
Full power bandwidth	$V_{in} = 2V_{p-p} (-3dB)$	BW		6		MHz
Power supply rejection ratio		SVRs			·	₫B
Hold mode feed through	fin = 4MHz Vin = 1 Vp-p, CLK open	НМТН		-50	-40	dB
Clock leak	Vin = 0V	CLLEAK		10	50	mV
Linearity	fin = 19.53kHz (10/512MHz) fclk = 10MHz *3	Lin		0.08	0.15	%
Hold mode droop	input voltage range, 0 to -2V	HMDR		2	10	mV/μs
Acquisition time	△V = 1.2V	Taq		12	20	ns
Settling time	Settle to ±0.2% of F.S. see the Timing Chart	T _{set}		36		ns
DC offset voltage	fclk = 5MHz	Voffset		± 15	± 100	m۷
Maximum sampling frequency		fcLkH	18			MHz
Minimum sampling frequency		fclkl			2	MHz
Differential gain (D.G.)	Vin = NTSC	DG		0.5	1.0	%
Differential phase (D.P.)	40 IRE more ramp fclk = 15MHz	DP		0.5	1.0	deg

*1 AV is voltage change during one sampling period.

*3 Input voltage waveform

51 2_µS

Fig. 2

- 2.0V

^{*2} Power consumption is $I_{CC} \times 5V + I_{EE1} \times 5V + 40 \text{mA} \times 1.8V$.

6dB amp section (see Fig. 3)

_		0	(CXA1008F	·		CXA1009F	5	Unit
Item	Condition	Symbol	Min.	Тур.	Max.	Min.	Тур.	Мах.	Offic
Intput voltage range	*3	VINA	-1.3		+ 0.8	- 1.3		+ 0.8	٧
Band width (-3dB)	$V_{in} = IV_{pp}$	W	45	55		15	25		MHz
Input bias current	-1V < V _{in} < 1V	I _{Bias A}		9	20		5	10	μΑ
Output impedance		ZOA		4	10		4	10	Ω
Voltage gain	*4	GVA	5.1	6.0	6.9	5.1	6.0	6.9	dB
Power supply rejection ratio		SVRA		- 40			- 40		dB

^{*3 2}ndary harmonic: -40dB fin = 3.58MHz

CLK OUT section (see Fig. 3)

		0 1111	0	(CXA1008F	•		CXA10091	P	Unit
Item	1	Condition	Symbol	Min.	Тур.	Max.	Min	Тур.	Max.	— —
	Amplitude		V _{CLK}	0.2	0.3	0.4	0.2	0.3	0.4	٧
Output voltage	Low level		VCLKL	-1.2	-1.1	- 0.9	- 1.2	-1.1	-0.9	٧
Rise time		RL2 = 1.5	tr		7	10		7	10	ns
Fall time		KΩ see Fig. 3	tf		5	8		5	8	ns
CLK Delay 1		1	TD1	20	28	34	36	38	45	ns
CLK Delay 2		1	τD2	14	22	28	24	26	33	ns

- 2V_{ref} amp section (see Fig. 3)

				CXA1008	P		CXA1009		Unit
Item	Condition	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Oint
Voltage gain ratio	$V_{ref} = -2V$	GVR	0.9	1.0	1.1	0.9	1.0	1.1	
Voltage galli ialio	$R_{Li} = 50\Omega$								
land bloo overant	$-3V < V_{in}$	I _{Bias R}		5	10		5	10	μΑ
Input bias current	< 0V	IBIAS R							,
Output impedance		ZOR		2	10		2	10	Ω

^{*4} $f_{in} = 3.58MHz V_{in} = 1V_{p-p}$

Electrical Characteristics Test Circuit

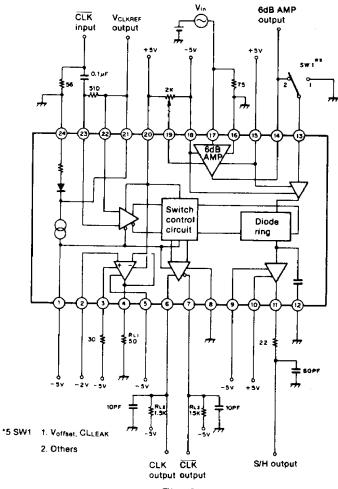


Fig. 3

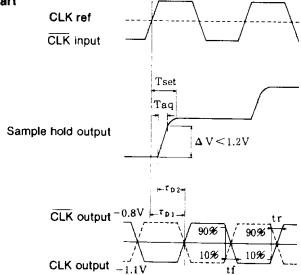


Fig. 4

Description of Functions

CXA1008P/1009P are the monolithic ICs incorporating a high-speed sample hold circuit, a wide band 6 dB amp, reference power supply for A/D converter, and a clock output section, and operate up to a sampling frequency of 35/18 MHz.

CXA1008P/1009P can compose in 20/15 MS/s A/D converter system in combination with a CX20052A. CXA1008P/1009P form, with the input of a single phase or 2-phase ECL clock input, a new sampling signal. For this reason, the sampling period remain unchanged even when the frequency or duty of the input sampling CLK signal changes.

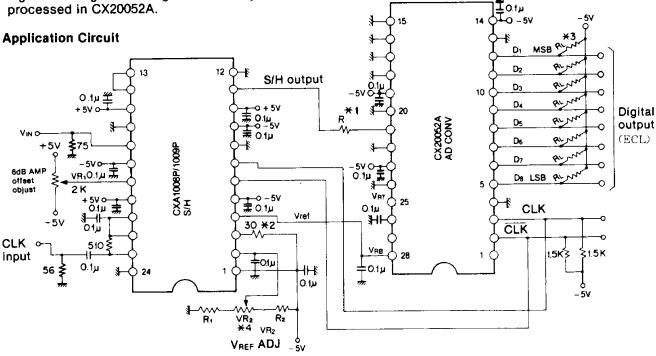
•Wide band 6 dB AMP.

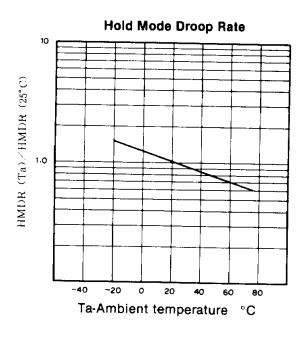
in-phase amp with a band width over 45/15 MHz amplifies ordinary TV signal (1Vp-p) to a 2Vp-p signal which gives the highest accuracy when processed in CX20052A.

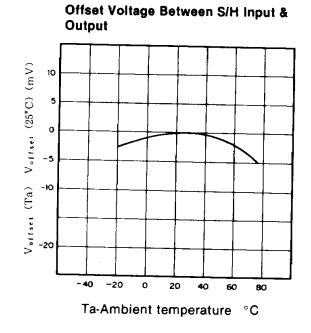
•CLK output section

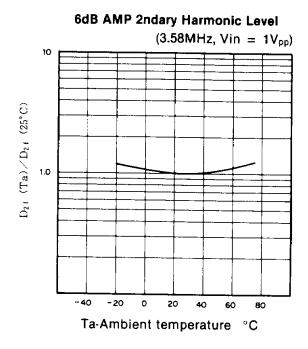
When used in combination with an A/D converter such as CX20052A, the CLK timing between the S/H circuit and the A/D converter needs to be adjusted, and up to 20/15 MHz, CXA1008P/1009P generate CLK timing signals for driving the A/D converter, and output 2-phase CLK at 300 mVp-p from pins 6 and 7. With this output, no separate CLK is required to combine with an A/D converter.

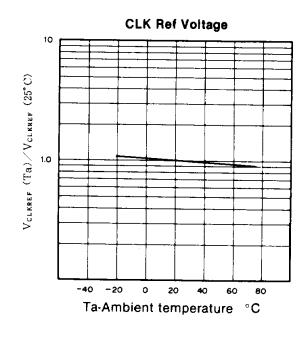
CXA1008P/1009P incorporate a buffer amp to provide a reference voltage for the A/D converter.



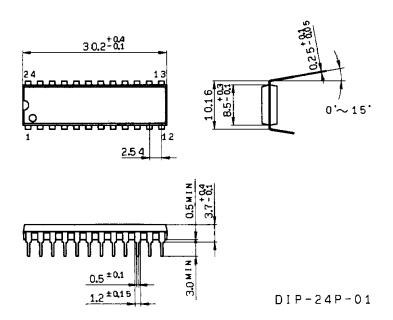

Fig. 5 Connection of CXA 1008P/1008P with CX20052A (1)


- *1 R is a ringing preventing resistor. Select between 10 to 50Ω
- *2 Pulldown R for Vret
- *3 $R_L = 4.3k\Omega$
- *4 $R_1 = 1k\Omega$, $VR_2 = 2k\Omega$, $R_2 = 2k\Omega$


Notes on Application


- 1. Unless sufficiently stable power supply and GND voltage in the high-frequency range are used, the device characteristics deteriorates. For this reason, bring the power supply bypass capacitor as near to this IC as possible, and make the pattern to the power supply and to the earth terminal as wide as feasible.
- To reduce CLK leak, use waveforms similar to sine waves as far as possible, up to the CLK input. For satisfactory operation, a CLK input ampritude of around 300mV is enough.
- 3. When the S/H input deviates over 1.2V during one sampling period, the output may contain errors.

Changes in Characteristics with Temperature



Package Outline Unit: mm

24pin DIP(Ptastic) 400mil 2.0g

8bit, 20/15MHz A/D Converter Evaluation Board with CXA1008P/CXA1009P S/H.

Description

CX20052A PCB-3A/3B is an 8 bit A/D converter board for video signal processing. A high speed S/H IC CXA1008P/1009P and a high speed 8 bit A/D converter CX20052A are assembled on single small printed circuit board.

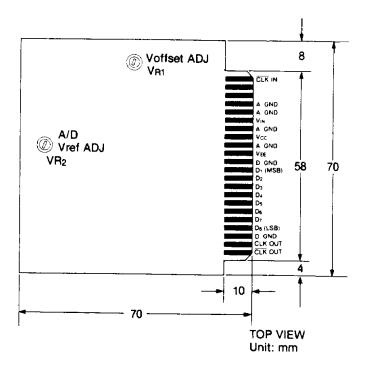
CX20052A PCB-3A with CXA1008P mounted, operates up to 20 MHz of conversion rate, and CX20052A PCB-3B with CXA1009P mounted, operates up to 15 MHz of conversion rate.

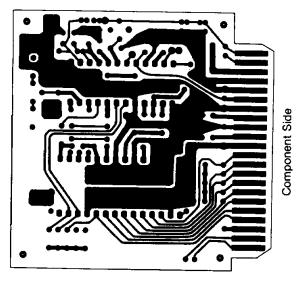
Features

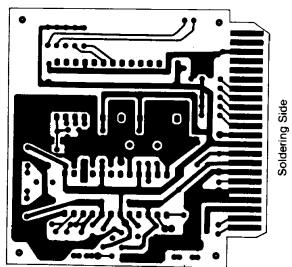
Resolution

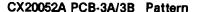
8 bit ± 1/2 LSB

Conversion rate

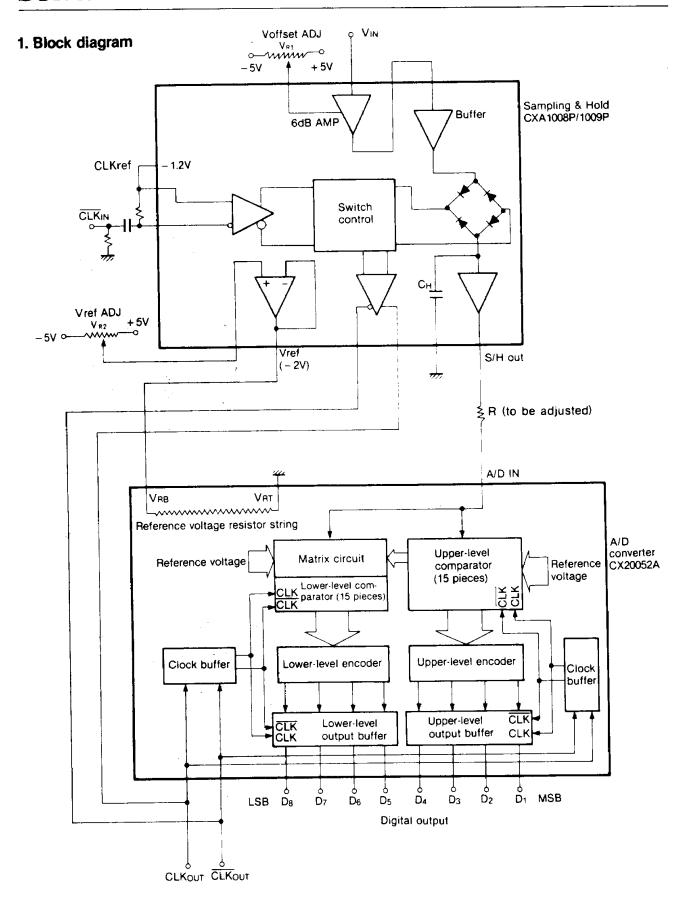

20 MHz CX20052A PCB-3A 15 MHz CX20052A PCB-3B


• Analog input level


1Vp-p ECL level


Digital output levelPower supply

±5V



7

2. Characteristics

1. Supply Voltage

$(Ta = 25^{\circ}C, V_{EE} = -5V, V_{CC} = 5V)$

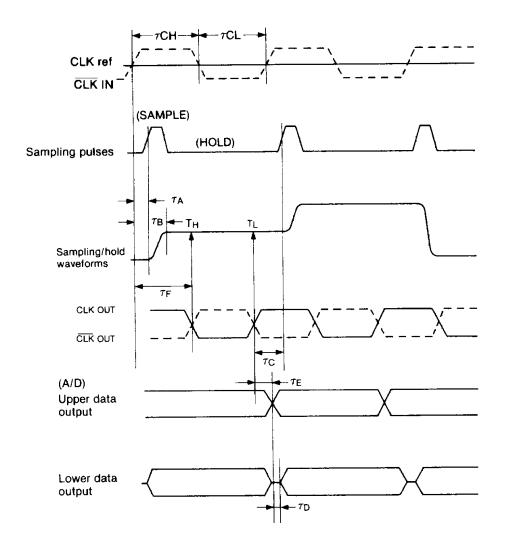
	Item		Symbol	Min	Тур	Max	Unit
V _{cc}	+ 5V	CX20052A PCB-3A	lcc lee		70 220	80 240	mA mA
V _{EE}	-5V	CX20052A	Icc		50	60	mA
		PCB-3B	lee		200	220	mA

2. Analog Input (V_{IN})

Item	Symbol	Min	Тур	Max	Unit
AC Input Voltage Amplitude	VIN			1	V
Offset Adjustable Range		± 1.5	± 2.0		V
Input Impedance	Zin				
CX20052APCB-3A			75		Ω
CX20052APCB-3B			75		Ω

3. Digital Input (CLK IN)

Item	Symbol	Min	Тур	Max	Unit
Input Voltage (p-p)	V _{CLK}	0.3	0.8	4	٧
Input Impedance	Zincl		50		Ω


4. Digital Output (D1 ~ D8) (1.5k Ω to V_{EE})

Item	Symbol	Min	Тур	Max	Unit
Output Voltage	V _{OH}	-0.90	-0.75		٧
	Vol		- 1.50	- 1.35	V

5. Clock Output (CLKout, CLKout) (See timing chart)

Item		Symbol CX20052A PCB-3A			CX20052A PCB-3B				
	•••	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output voltage	Amplitude	V _{CLK}	0.2	0.3	0.4	0.2	0.3	0.4	٧
•	Low Level	VCLKL	- 1.2	-1.1	-0.9	- 1.2	-1.1	- 0.9	V,
Rise time		tr		6	10		6	10	ns
Fall time		tf		12	15		12	15	ns
CLK Delay		τ _F	20	28	34	36	38	45	ns

3. Timing Chart

 T_{H} shows a timing when the A/D latches upper 4 bits. T_{L} shows a timing when the A/D latches lower 4 bits.

- 1	0	CX20052A PCB-3A			CX20052A PCB-3B			
Item	Symbol	Min	Тур	Max	Min	Тур	Мах	Unit
	τ _{CH}		25			33		ns
Clock in	₹GL		25			33	•	ns
	T _A		6			12		ns
Sampling delay	$ au_{B}$		25			36	•	ns
Clock out	7F	20	28	34	36	38	45	ns
Data dalay	<i>T</i> E			8			8	ns
Data delay	$ au_{ m D}$			4			4	ns

4. Adjustment

(1) Offset Voltage (Voffset ADJ)

 VR_1 should be adjusted so that the S/H output meets the input voltage range of the A/D (0 to -2V).

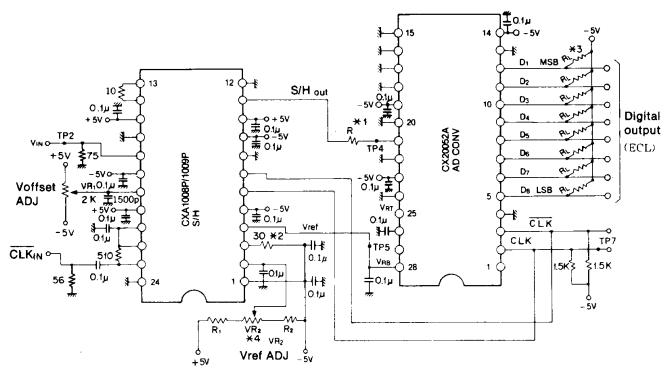
(2) A/D reference voltage (Vref ADJ).

The reference voltage of the A/D (TP5) is to be -2V. VR₂ should be adjusted.

5. Output Data Format

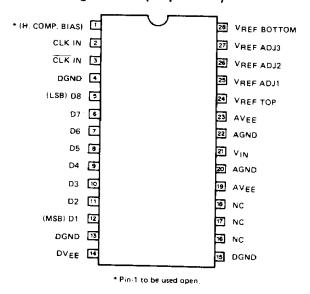
The input of the A/D converter IC (S/H out) is quantized in 8 bit within the reference voltage range of V_{RT} and V_{RB} are set at 0V and -2V respectively on the printed circuit board.

Step		A/D input signal voltage		Digital output of	ode:
				MSB	LSB
	over	0. 0 0 0 0 V		111111	1 1
0 0 0		0. 0 0 0 V	(V _{RT})	111111	1 1
		•		•	
•		•			
•					
1 2 7		-0. 9 9 6 1 V		100000	0 0
1 2 9		-1. 0 0 3 9 V		0 1 1 1 1 1	1 1
•					
•					
•		•			
2 5 5		-2. 0 0 0 0 V	(V _{RB})	000000	0 0
	under	-2. 0 0 0 0 V	ŀ	000000	0 0


Note on application

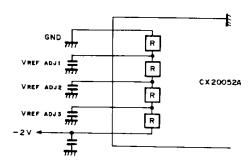
- (1) Although the pull down resistors (RL: $4.3k\Omega$) are mounted on the PCB, additional pull down is recommended in an external circuit. The output current at the A/D output terminal should not exceed 10 mA.
- (2) Digital output data should be latched by an external circuit to achieve a rated performance. Output data can be latched at a rising edge of CLKout.
- CLK_{OUT} AND CLK_{OUT} should be reshaped by an ECL line receiver such as MC10116 in an external circuit.

 (3) The reference voltage is derived from the V_{EE} by a simple resistor dividing network. The power supply (±5V) should be stabilized to reduce voltage drift of the reference voltage.
- (4) To reduce CLK leak, use waveforms similar to sine waves as far as possible up to the CLK input. For satisfactory operation, a CLK input amplitude of around 300m Vpp is enough.
- (5) When the S/H input deviates over 1.2V during one sampling period, the output may contain errors.



CX20052A PCB-3A/3B Circuit

- *1. R is a ringing preventing resistor. Select between 10 to 50Ω according to pattern length.
- *2. Pulldown R for Vref.
- *3. RL = $4.3k\Omega$
- *4. R₁ = $2k\Omega$, $VR_2 = 2k\Omega$, $R_2 = 1k\Omega$


Additional Information on CX20052A Pin Configuration (Top View)

Pin Description

No.	Symbol	Description
1	H-COMP BIAS	Pin connected to internal comparator. It should not be connected to outer circuit.
2	CLK IN	CLOCK input pin.
3	CLK IN	CLOCK input pin.
4	DGND	Ground pin of digital circuit.
15	DGND	Ground pin of digital circuit.
17	NC	Non-connection.
18	NC	
24	VREF (T)	Reference voltage pin. (OV)
25	VREF ADJI	Reference voltage adjusting
26	VREF ADJ2	pin.
27	VREF ADJ3	(Usually it should be con- nected to GND through 0.047 µF capacitor.)
28	VREF (B)	Reference voltage pin. (-2.0V)

(*) Reference resistors have adjusting pins as shown below. Usually these pins are connected to GND through 0.047 μ F capacitors. When an adjustment is required, they should be connected to GND or VREF (B) through resistors.

Output Coding

Step	Input signal voltage	Output digital code
000	0.0000V	MSB LSB 11111111
	•	
	•	
127	-0.9961V	10000000
128	-1.0039V	01111111
129	-1.0118V	01111110
255	-2.0000V	0000000