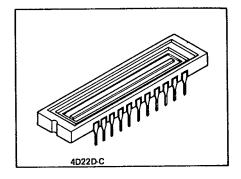
9097248 TOSHIBA (LOGIC/MEMORY)


CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device) TCD102C-1

67C 09521

T-41-55

The TDS102C-1 is a high resolution and high sensitivity 2048 element linear image sensor.

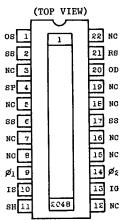
The sensor is designed for Fac-simile readers, optical Character Recognition and other optical appli-cations. The device contains a row of 2048 photodiodes which provide a 8-line/mm resolution across a B4 size paper with well blue response. The TCD102C-1 is capable of high speed operation up to a 10 MHz data rate, and incorporate on-chip sample-andhold circuitry.

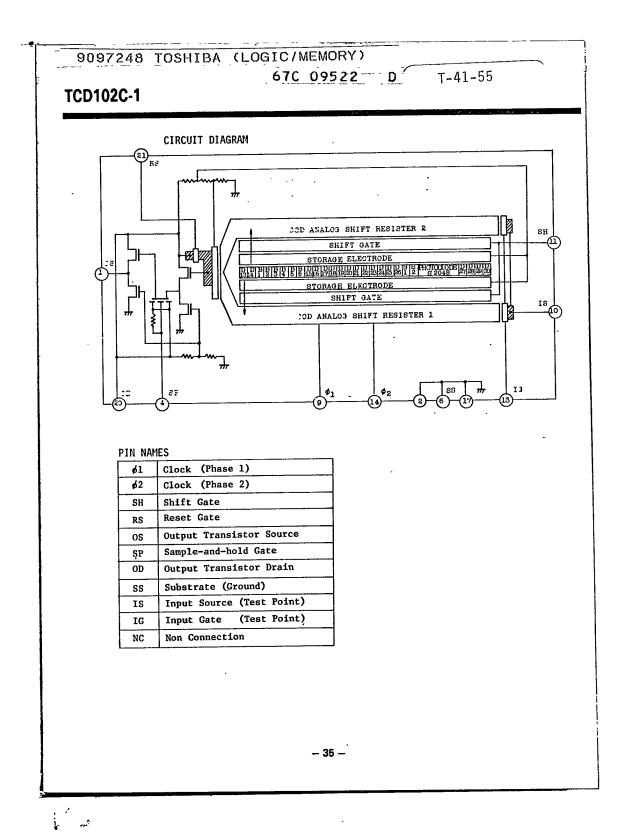
FEATURES:

- · Number of Image Sensing Elements:
- Image Sensing Element Size:Photo Sensor Structure:
- · Clock:
- · On-chip Circuitry:
- · Dynamic Range:
- . Package:

 $14\mu m$ by $14\mu m$ on $14\mu m$ centers. High sensitive P-n photo diode. 2-phase.

Sample-and-hold circuitry.


600(Typ.). 22 pin DIP with Hermetic sealed optical glass window.


PIN CONNECTIONS

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Clock Pulse Voltage	Vø		v	
Shift Pulse Voltage	V _{SH}			
Reset Pulse Voltage	V _{RS}			
Sample-and-Hold Pulse Voltage	V _{SP}	-0.3∿15		
Output Transistor Drain Voltage	v _{od}		ļ	
Input Gate Voltage	V _{IG}			
Input Source Voltage	v _{is}]		
Operating Temperature	Topr	-25^60	°C	
Storage Temperature	Tstg	-40∿100	°C	

Note: All Voltages are with respect to SS terminal.

9097248 TOSHIBA (LOGIC/MEMORY) 67C 09523 D

T-41-55

TCD102C-1

OPTICAL AND ELECTRICAL CHARACTERISTICS

 $_{\mathrm{Ta=25}^{\circ}\mathrm{C}},~\mathrm{V_{OD}=V_{\mathrm{IS}}=12V},~\mathrm{V_{IG}=0V},~\mathrm{V_{\phi}=V_{RS}=V_{\mathrm{SH}}=12V}$ (PULSE)

 f_{ϕ} =0.5, f_{RS} =1MHz, t_{INT} (INTEGRATION TIME)=10 msec,

LIGHT SOURCE=DAYLIGHT FLUORESCENT LAMP

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Responsivity	R		0.86	1.08	1.30	V/lx·sec
Rhoto Response Non Uniformity	PRNU	(Note 1)	-	-	<u>+</u> 10	%
Saturation Output Voltage	VSAT	V _{OD} =11.4V	0.8	1.0		v
Saturation Exposure	SE	VSAT/R	0.62	1.0	-	1x·sec
Dark Signal Voltage	v _{DRK}	Vop=13V	-	1.8	10	mV
DC Power Dissipation	PD	V _{OD} =13V	-	30	60	mW
Total Transer Efficiency	TTE		92	95	'	%%
Output Impedance	z ₀		-	900	2500	Ω
Dynamic Range	DR	V _{SAT} /V _{DRK}		600		

Note: (1) Measured at 50% of SE

Definition of PRNU:

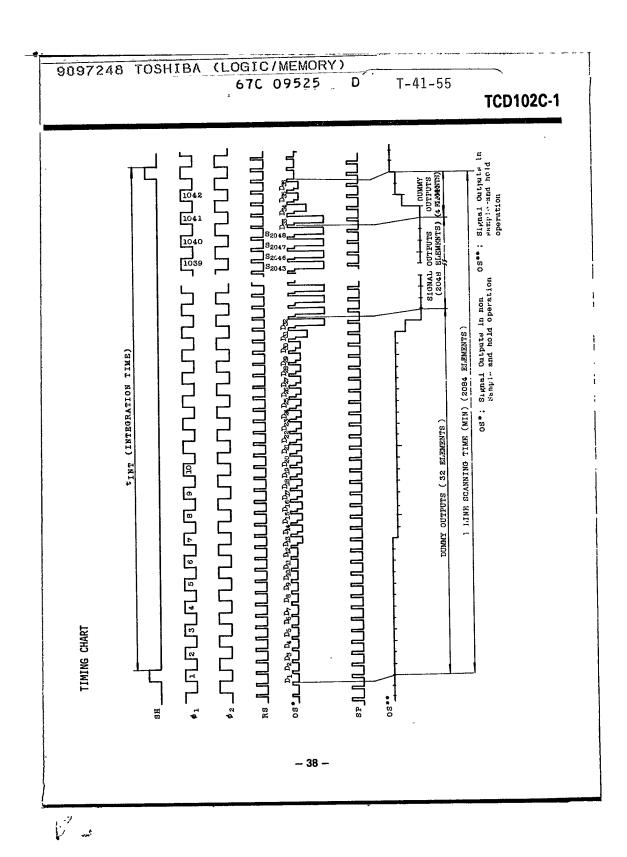
 $PRNU = \frac{\Delta \chi}{\overline{\chi}} \times 100 (\%)$

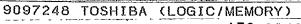
where $\vec{\chi}$ is average of total photodiode outputs and $\Delta\chi$ is deviation of photodiode output under uniform illumination.

9097248 TOSHIBA (LOGIC/MEMORY) 67C 09524 D T-41-55

TCD102C-1

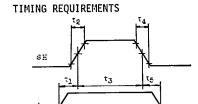
OPERATING CONDITION (Ta=25°C)

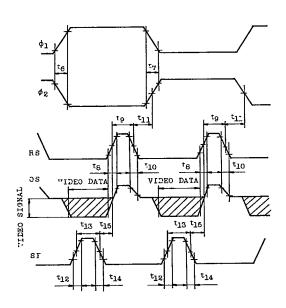

CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARKS
	H-LEVEL	**	11	12	13	v	
Clock Pulse Voltage	L-LEVEL	Vø	0.0	0.5	0.8	V	
	H-LEVEL	Veu !	11	12	13	v	
Shift Pulse Voltage	L-LEVEL		0.0	0.5	0.8	V	
	H-LEVEL V _{RS}		11	12	13	v	
Reset Pulse Voltage		V _{RS}	0.0	0.5	0.8	V	
Sample-and-hold	H-LEVEL V _{SP}		11	12	13	V	(1)
Pulse Voltage		VSP	0.0	0.5	0.8	V	
Output Transistor Drain	Voltage	v _{od}	11.4	12	13	V	
Input Gate Voltage		v _{IG}	0	0	1	V	
Input Source Voltage		v _{is}	11	12	13	v	


Note: (1) Supply DC12V to SP terminal when sample-and-hold circuitry is

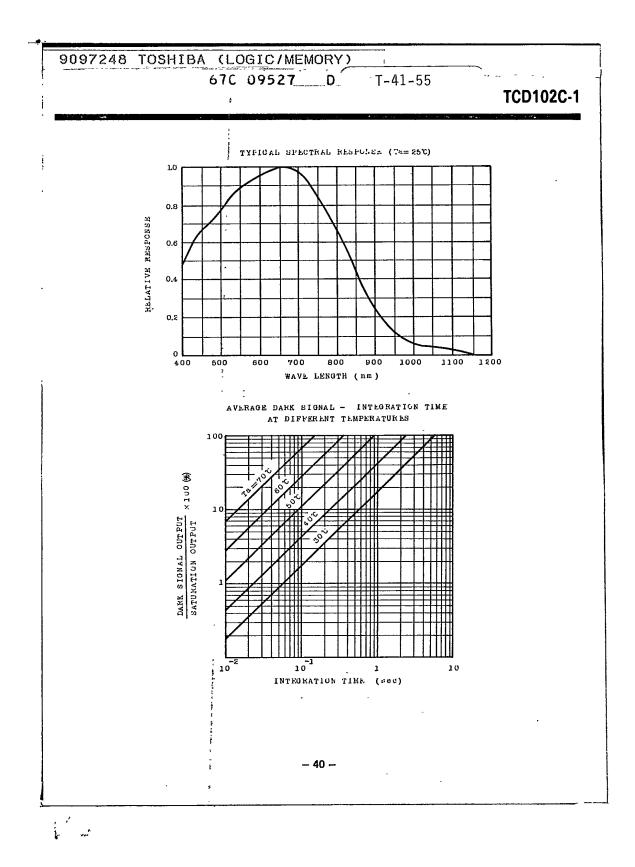
CLOCK CHARACTERISTICS (Ta=25°C)

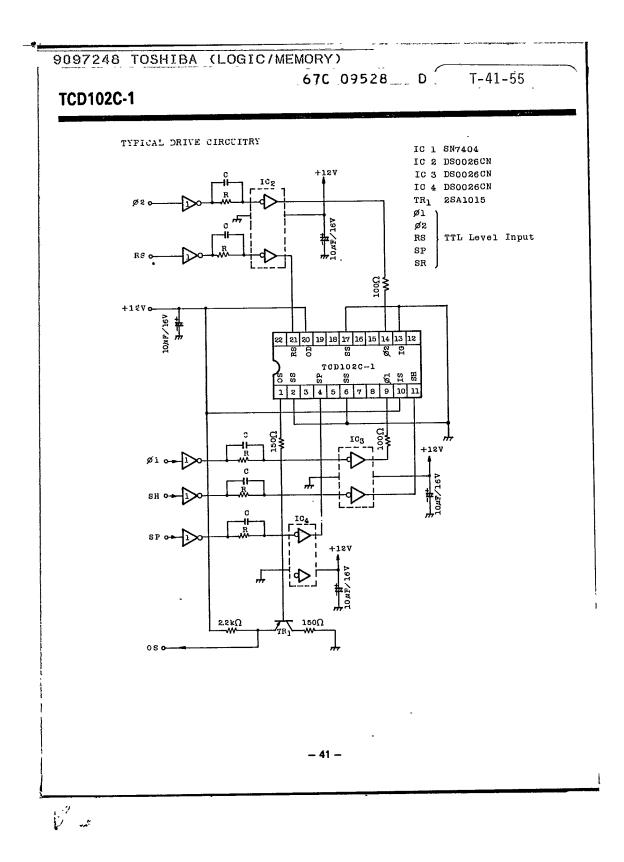
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARKS
Clock Pulse Frequency	fø	-	0,5	-	MHz	
Reset Pulse Frequency	f _{RS}	-	1	-	MHz	
Clock Input Terminal Capacitance	C.	-	900	-	pF	
Shift Gate Capacitance	CSH	-	250	-	pF	
Reset Gate Capacitance	C _{RS}	-	10	-	pF	
Sample-and-hold Gate Capacitance	CSP	-	10	-	pF	


Note: Insert load resister (1K Ω) between OS and SS in case that $f_{
m RS}\! \ge \! 5 MHz$



67C 09526 D T-41-55


TCD102C-1



CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Pulse Timing of SH and ϕ_1	t1 , t5	0	100	-	nsec
SH Rise Time, Fall Time	t ₂ , t ₄	0	50	-	nsec
SH Pulse Width	t3	60	300	-	nsec
φ ₁ ,φ ₂ Rise Time, Fall Time	t6 , t7	0	100	-	nsec
RS Rise Time, Fall Time	t ₈ , t ₁₀	0	20	-	nsec
RS Pulse Width	t9	40	250	-	nsec
Pulse Timing of ϕ_1, ϕ_2 and RS	t11	10	250	-	nsec
SP Rise Time, Fall Time	t ₁₂ , t ₁₄	10	20	-	nsec
SP Pulse Width	t13	60	100	-	nsec
Pulse Timing of SP and RS	t ₁₅	20	50	-	nsec

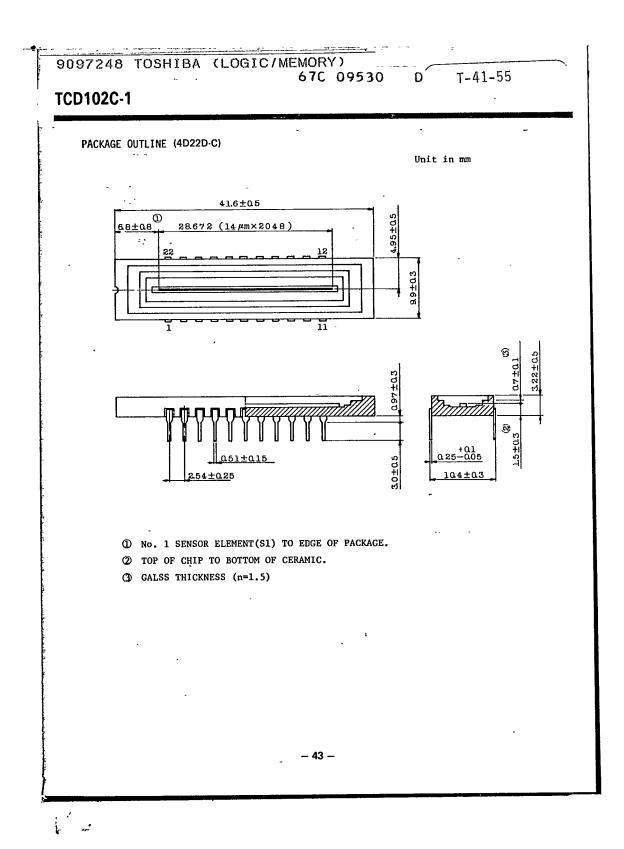
Note : fRS=1MHz(Typ.)

T-41-55

TCD102C-1

CAUTION

1. Window Glass


The dust and stain on the glass window of the package degrade optical performance of CCD sensor. Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N_2 or fleon gas. Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

2. Electrostatic Breakdown

Store in shorting clip or in conductive foam to avoid electrostatic breakdown.

3. Incident Light

CCD sensor is sensitive to infrared light. Note that infrared light component degrades resolution and PRNU of CCD sensor.

