

Current Transducer LF 2005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		2000		Α
I _P	Primary current, measuring range @ ± 24 V		0 ± 3000		Α
$\dot{R}_{_{M}}$	Measuring resistance	e	$\mathbf{R}_{\mathrm{Mmin}}$	$R_{_{\mathrm{M}\mathrm{ma}}}$	x
	with ± 15 V	$@ \pm 2000 \text{ A}_{max}$	0	8	Ω
		@ ± 2200 A max	0	5	Ω
	with ± 24 V	@ ± 2000 A max	5	29	Ω
		@ ± 3000 A max	5	11	Ω
I_{SN}	Secondary nominal r.m.s. current		400		mΑ
K _N	Conversion ratio		1:500	0	
V _c	Supply voltage (± 5 %)		± 15	24	V
I _c	Current consumption		33(@±	24 V)+	ς mΑ
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		。 kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error	± 0.3 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$ - 25°C + 70°C	Typ ± 0.2	Max ± 0.5 ± 0.4	mA mA
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 50 DC 1	00	μs A/μs kHz

General data

T_{A}	Ambient operating temperature	- 25 + 70	°C
T_s	Ambient storage temperature	- 40 + 85	°C
R _s	Secondary coil resistance @ T _A = 70°C	25	Ω
m	Mass	1.5	kg
	Standards 2)	EN 50178	

$I_{PN} = 2000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

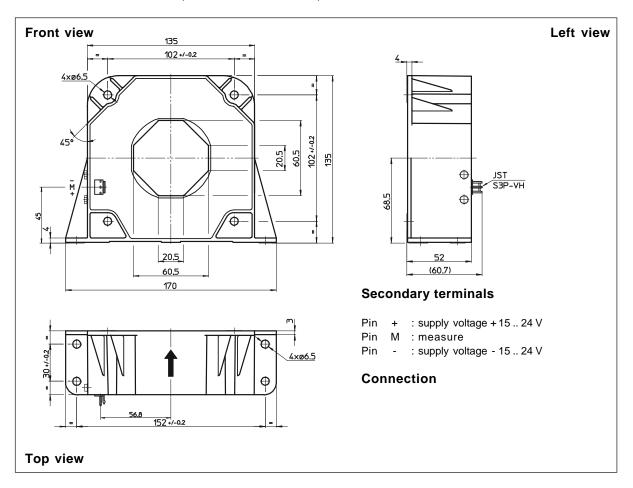
- · Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

 $\underline{\text{Notes}}$: 1) With a di/dt of 100 A/ μ s

²⁾ A list of corresponding tests is available.


060425/6

www.lem.com

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$

Dimensions LF 2005-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening transducer Flat or vertical position Fastening torque
- Primary through-hole
- Connection of secondary
- ± 0.5 mm 4 holes Ø 6.5 mm 4 screw M6 steel 5.5 Nm or 4.05 Lb. - Ft. 60.5 x 60.5 mm

S3P-VH

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060425/6

www.lem.com

LEM