DESCRIPTION

M52957FP is a semiconductor integrated circuit containing distance detection signal processing circuit for 3 V supply voltage. This device transforms each optical inflow current I1 and I2 from PSD SENSOR into the voltage, and integrates that output after doing calculation corresponds to $11 /(11+12)$, and outputs it as the time data(pulse term).

FEATURES

- Wide supply voltage range $\mathrm{Vcc}=2.2$ to 5.5 V
- Includes clamp level switching circuit (Switch is 16 kinds by outside control)
- Includes standby function
- Includes power on RESET function

APPLICATION

Auto focus control for the CAMERA
Sensor for short distance etc

RECOMMENDED OPERATING CONDITION

BLOCK DIAGRAM

Note: pin4,13 is connected only engineering sample

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Ratings	Unit	Remark
Vcc	Supply voltage	7.0	V	note 1
Pd	Power dissipation	320	mW	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
$\mathrm{K} \theta$	Thermal derating	-3.2	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geqq 25^{\circ} \mathrm{C}$
VIF	Pin supply voltage	7.0	V	Pin5,7,8,9,10,111
VI/O	Another pin supply voltage	-0.3 to $\mathrm{VcC}+0.3$	V	note 2
Isout	Output pin inflow current	0.5	mA	NPN open collector
Topr	Operating temperature	-10 to 50	${ }^{\circ} \mathrm{C}$	
Tstg	Storage temperature	-40 to 125	${ }^{\circ} \mathrm{C}$	
Vsurge	Surge voltage	$\pm 200 \mathrm{~V}$ over		$\mathrm{C}=200 \mathrm{PF}$

Note 1. As a principle,do not provide a supply voltage reversely.
2. As a principle, do not provide the terminals with the voltage over supply voltage or under ground voltage.

ELECTRICAL CHARACTERISTICS
($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$, unless otherwise noted)

Symbol	Classification	Parameter	Test conditions	Limits			Unit
				Min.	Typ.	Max.	
Vcc		Operating supply voltage range		2.2	3.0	5.5	V
ICC1	Consuming current	Usual consuming current		-	5.9	7.7	mA
ICC2		While Rapid charge consuming current 1	While CH rapid charge consuming current	-	17.7	23.0	mA
Icc3		While Rapid charge consuming current 2	While CH and CINT rapid charge consuming current	-	19.0	24.7	mA
IcC4		While STAND BY consuming current		-	-	1.0	$\mu \mathrm{A}$
VHOH	HOLD pin	HOLD "H" input voltage		1.1	-	7.0	V
VHOL		HOLD "L" input voltage		-0.3	-	0.3	V
IHOH		HOLD "H" input current	$\mathrm{VIH}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
IHOL		HOLD "L" input current	VIL=0V	-100	-75	-50	$\mu \mathrm{A}$
VINH	INT pin	INT "H" input voltage		1.1	-	7.0	V
VINL		INT "L" input voltage		-0.3	-	0.3	V
IINH		INT "H" input current	$\mathrm{V} \mathrm{IH}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
lint		INT "L" input current	VIL=0V	-100	-75	-50	$\mu \mathrm{A}$
VCLH	CLALV pin	CLALV "H" input voltage		1.1	-	7.0	V
VCLL		CLALV "L" input voltage		-0.3	-	0.3	V
ICLH		CLALV "H" input current	$\mathrm{VIH}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
ICLL		CLALV "L" input current	VIL=0V	-100	-75	-50	$\mu \mathrm{A}$
Vreh	RESET pin	RESET "H" input voltage		1.1	-	7.0	V
VreL		RESET "L" input voltage		-0.3	-	0.3	V
IREH		RESET "H" input current	$\mathrm{VIH}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
IREL		RESET "L" input current	VIL=0V	-100	-75	-50	$\mu \mathrm{A}$
Vsth	STB pin	STB "H" input voltage		$\begin{aligned} & \hline \mathrm{Vcc} \\ & -0.3 \end{aligned}$	-	7.0	V
VstL		STB "L" input voltage		-0.3	-	0.3	V
Isth		STB "H" input current	$\mathrm{VIH}=5.5 \mathrm{~V}$	-	-	3.0	$\mu \mathrm{A}$
ISTL		STB "L" input current	VIL=0V	-150	-100	-50	$\mu \mathrm{A}$
ICHQC	HOLD C	CH rapid charge current	$\mathrm{IPSD}=5 \mu \mathrm{~A}, \quad \mathrm{VCH}=0 \mathrm{~V}$	-2000	-1000	-500	$\mu \mathrm{A}$
ICHC		CH stationary charge current	$\mathrm{Vch}=0 \mathrm{~V}$	-30	-20	-10	$\mu \mathrm{A}$
ICHD		CH stationary discharge current	$\mathrm{VCH}=1.5 \mathrm{~V}$	10	20	30	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Classification	Parameter	Test conditions	Limits			Unit
				Min.	Typ.	Max.	
ICINTC	Double integration	CINT rapid charge current	VCI=1V(CINT stable period)	84	120	156	$\mu \mathrm{A}$
VcInt		CINT reference voltage	GND criterion	1.6	1.8	2.0	V
IC11		The first integration current	VCINT=1.5V	4.2	6.0	7.8	$\mu \mathrm{A}$
ICl2		The second integration current	Vchf=2V, Vchn=0V	-3.31	-2.54	-1.77	$\mu \mathrm{A}$
$\Delta \mathrm{lCl1}$		The first integration current stability percentage		-	-	10	\%
$\Delta \mathrm{Cl} 12$		The second integration current stability percentage		-	-	10	\%
ICI12		The first and second integration current ratio	$\|\mathrm{ICl1}\| / \mid \mathrm{IcI2} 2$	2.12	2.36	2.60	
$\mathrm{D}(9: 1)-1$	AF input condition 1	AF output time(9:1)-1	Near side 9 : Far side 1	11.78	13.40	15.02	msec
$\mathrm{D}(6: 4)-1$		AF output time(6:4)-1	Near side 6 : Far side 4	7.77	8.95	10.13	msec
$\mathrm{D}(3: 7)-1$		AF output time(3:7)-1	Near side 3 : Far side 7	3.77	4.51	5.25	msec
$\Delta \mathrm{AF}-1$		AF slope -1		6.57	8.89	11.21	msec
LAF-1		AF linearity-1		0.9	1.0	1.1	
D(9:1)-2	AF input condition 2	AF output time(9:1)-2	Near side 9 : Far side1	11.78	13.40	15.02	msec
$\mathrm{D}(6: 4)-2$		AF output time(6:4)-2	Near side 6 : Far side4	7.77	8.95	10.13	msec
$\mathrm{D}(3: 7)-2$		AF output time(3:7)-2	Near side 3 : Far side7	3.77	4.51	5.25	msec
$\Delta \mathrm{AF}-2$		AF slope -2		6.57	8.89	11.21	msec
LAF-2		AF linearity-2		0.9	1.0	1.1	
D(9:1)-3	AF input condition 3	AF output time(9:1)-3	Near side 9 : Far side1	11.78	13.40	15.02	msec
$\mathrm{D}(6: 4)$-3		AF output time(6:4)-3	Near side 6 : Far side 4	7.77	8.95	10.13	msec
$\mathrm{D}(3: 7)-3$		AF output time(3:7)-3	Near side 3 : Far side 7	3.77	4.51	5.25	msec
$\Delta \mathrm{AF}-3$		AF slope -3		6.57	8.89	11.21	msec
LAF-3		AF linearity-3		0.9	1.0	1.1	
$\Delta \mathrm{D}(9: 1)$	AF input condition 1 minus 2	$\Delta \mathrm{AF}$ output time(9:1)	Near side 9 : Far side1 (Consition 1-2)	-	-	280	$\mu \mathrm{sec}$
$\Delta \mathrm{D}(6: 4)$		$\Delta \mathrm{AF}$ output time(6:4)	Near side 6 : Far side4 (Consition 1-2)	-	-	280	$\mu \mathrm{sec}$
$\Delta \mathrm{D}_{(3: 7)}$		$\Delta \mathrm{AF}$ output time(3:7)	Near side 3 : Far side7 (Consition 1-2)	-	-	280	$\mu \mathrm{sec}$
IsoutL	Data	SOUT leak current	$\mathrm{VIN}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
Vsouts		SOUT saturation voltage	Iout $=500 \mu \mathrm{~A}$	-	-	0.3	V
$\Delta \mathrm{INF}$	Sensor	Signal light saturation current		3.0	-	-	$\mu \mathrm{A}$
IPSD		Stationary light remove current		-	-	30	$\mu \mathrm{A}$
ICLAM		Clamp level	Change quantity for Typ. current	-30	-	30	\%

DISTANCE DETECTION SIGNAL PROCESSING FOR 3V SUPPLY VOLTAGE

Icc2, Icc3, Icc4, ІснQc, Ichc, Ichd, IcIntc, Vcint, IcI1, IcI2 Set up the logic control terminal, correspond to the parameter.
$\Delta \mathbf{I C l 1}, \Delta \mathbf{I C l 2}$
Change ratio between the first integration current and the second integration current at a voltage of CINT that is
\{CINT reference voltage(VCINT) to 0.1 V \} and 1 V .

$$
\begin{aligned}
& \Delta \mathrm{C} 11=\left(1-\frac{\text { The first integration current }(\mathrm{CINT}=1 \mathrm{~V})}{\text { The first integration current }(\mathrm{CINT}=\mathrm{V} \text { CINT to } 0.1 \mathrm{~V})}\right) \times 100 \% \\
& \Delta \mathrm{C} 12=\left(1-\frac{\text { The second integration current }(\mathrm{CINT}=1 \mathrm{~V})}{\text { The second integration current }(\mathrm{CINT}=\mathrm{V} \text { CINT to } 0.1 \mathrm{~V})}\right) \times 100 \%
\end{aligned}
$$

Connect the resistance of $120 \mathrm{k} \Omega$ instead of PSD and establish current output from photo coupler correspond to the parameter. And input the varied resistance ratio. And measure the pulse width of

Sout output at that time,obtain AF slope and AF linearity from the equations below.

Input condition $1: \operatorname{IPSD}($ Stationary light current $)=0 \quad|1+| 2=100 n A$ Input condition2 : IPSD(Stationary light current)=0 $\quad 11+12=50 n A$ Input condition3 $: \operatorname{IPSD}($ Stationary light current $)=10 \mu \mathrm{~A} \quad \mid 1+\mathrm{I}=100 \mathrm{nA}$
$D(9: 1) \ldots$. The pulse width of SOUT output at input with $I 1: I 2=9: 1$
$D(6: 4) \ldots$. The pulse width of SOUT output at input with $11: I 2=6: 4$
$D(3: 7) \ldots$. The pulse width of SOUT output at input with $11: 12=3: 7$

AF slope : $\triangle A F=D(9: 1)-D(3: 7)$
$A F$ linearity : $L(A F)=(D(9: 1)-D(6: 4)) /\left(D_{(6: 4)}-D(3: 7)\right)$
PSD quite resistance : $120 \mathrm{k} \Omega$
$\Delta I N F$, IPSD
The input current of one side channel when stationary light remove circuit and I/V transform AMP is not saturated.

APPLICATION EXAMPLE

CONTROLS

(1) STB

This terminal enables IC to operate. IC is Standby at HIGH in this terminal. IC can operate at LOW in this terminal.
(2) RESET

This terminal resets the whole IC including a logic. This terminal resets IC at HIGH. This terminal cancel resetting IC at the edge from HIGH to LOW. IC includes power on reset function. The control from external is also possible. The reset term in IC takes OR between power on reset and control signal from external.
 countermeasures circuit of integration condenser is active.
(3) CLALV

This terminal sets up clamp level.
As including D/A of 4bit,16way clamp level setting is possible by inputting clock after reset is canceled(include none clamp).

Set up current value of each bit is on the right table.
The number of input clock and set up clamp level is as follows.

Bit	Set up current (Typ.)
1	0.125 nA
2	0.25 nA
3	0.5 nA
4	1.0 nA

Clock value	Clamp level(Typ.) None clamp
0	0.125 nA
1	0.250 nA
2	0.375 nA
3	0.500 nA
4	0.625 nA
5	0.750 nA
6	0.875 nA
7	1.000 nA
8	1.125 nA
9	1.250 nA
10	1.375 nA
11	

Clock value	Clamp level(Typ.)
12	1.500 nA
13	1.625 nA
14	1.750 nA
15	1.875 nA
16	None clamp
17	0.125 nA
18	0.250 nA
19	0.375 nA
20	0.500 nA

Clamp level is established with fall edge of input clock. It repeats the same value after 16 clock.
(4) HOLD, INT

These terminals implement the following controls by inputting HIGH/LOW.
a. CINT rapid charge ON, OFF
b. CH rapid charge ON , OFF
c. Stationary light hold ON, OFF
d. The first integration ON, OFF
e. The second integration ON, OFF

a. CINT rapid charge

After reset is canceled, the capacity of CINT is charged rapidly until INT terminal first falls.
b. CH rapid charge

After reset is canceled, the capacity of CH is charged rapidly until INT terminal first rises and falls.
c. Stationary light hold

After reset is canceled, holds the stationary light while HOLD terminal is HIGH.
d. The first integration

After reset is canceled, as HOLD terminal is HIGH and INT terminal is HIGH, the first integration is implemented while INT terminal is HIGH. Therefore, the first integration must be finished(INT terminal from HIGH to LOW) until stationary light hold will be completed (HOLD terminal from HIGH to LOW)
e. The second integration

After reset is canceled, the second integration is implemented as HOLD terminal is LOW and INT terminal is HIGH. And,the second integration is completed by exceeding judgement level of CINT terminal although INT terminal is HIGH.
(5) SOUT

When the second integration starts, This terminal becomes from HIGH to LOW. If CINT terminal exceeds judge level or INT terminal becomes from HIGH to LOW, this terminal becomes from LOW to HIGH.
(notice) As the signal from microcomputer,the signal that controls IRED ON/OFF is required except for above mentioned control signals. But applying the timing of HOLD is available.

SEQUENTIAL TIME CHART EXAMPLE

MASK OPTION

(1) The second integration current value can be doubled.

$$
(2.5 \mu \longrightarrow 5.0 \mu \mathrm{~A})
$$

(2) Control terminal variation
(1) Full spec (typical)

This type uses CLALV, STB, RESET, INT, HOLD, SOUT terminal as I/F terminal to the microcomputer.
This is the typical type at M52957FP.
(2) Most simplified type

This type does not connect CLALV, STB, RESET terminals to the microcomputer.
When above mentioned terminals are not connected to the microcomputer without changing mask,connect each terminal to the ground. In this case,clamp level becomes 0 and standby function is lost. Power on reset in IC is used as reset.
(3) Explanation of the terminal that can be simplified.
(a) CLALV

In the typical type,16way clamp levels can be set by the external control,but also the terminal can be simplified by mask option as follows.

1. Clamp level fixation

Selects 1 point from 16 steps of clamp level and fixes it.
2. Clamp level 2 step changeover

Selects 2 points from clamp level and switches it by changing CLALV terminal HIGH/LOW. However,as selecting 2 points, there is a following constraint.

Fixes 3 parts of 4 switches correspond to each bit in figure to ON or OFF, controls another part by CLALV terminal .
(b) STB

When no standby function required such as Vcc is switched ON/ OFF,STB terminal can be eliminated.
(c) RESET

Since IC include power on reset circuit,RESET terminal can be eliminated. As merit of controlling RESET terminal from outside,distance detection time can be shortened because there is no need to switch Vcc or STB Terminal ON /OFF at consecutive distance detection.

DESCRIPTION OF PIN

