54ABT16500 18-Bit Universal Bus Transceivers with TRI-STATE Outputs

July 1998

💊 National Semiconductor

54ABT16500 18-Bit Universal Bus Transceivers with TRI-STATE® Outputs

_

General Description

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and \overline{OEBA}), latch-enable (LEAB and LEBA), and clock (\overline{CLKAB} and \overline{CLKBA}) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if \overline{CLKAB} is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of \overline{CLKAB} . Output-enable OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses \overline{OEBA} , LEBA, and \overline{CLKBA} . The output enables are complementary (OEAB is active high and \overline{OEBA} is active low).

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Features

- Combines D-Type latches and D-Type flip-flops for operation in transparent, latched, or clocked mode
- Flow-through architecture optimizes PCB layout
- Guaranteed latch-up protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9687001

Ordering Code

Military	Package Number	Package Description
54ABT16500W-QML	WA56A	56-Lead Cerpack

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS100225

1

PrintDate=1998/07/14 PrintTime=11:08:55 43605 ds100225 Rev. No. 1 cmserv Proof

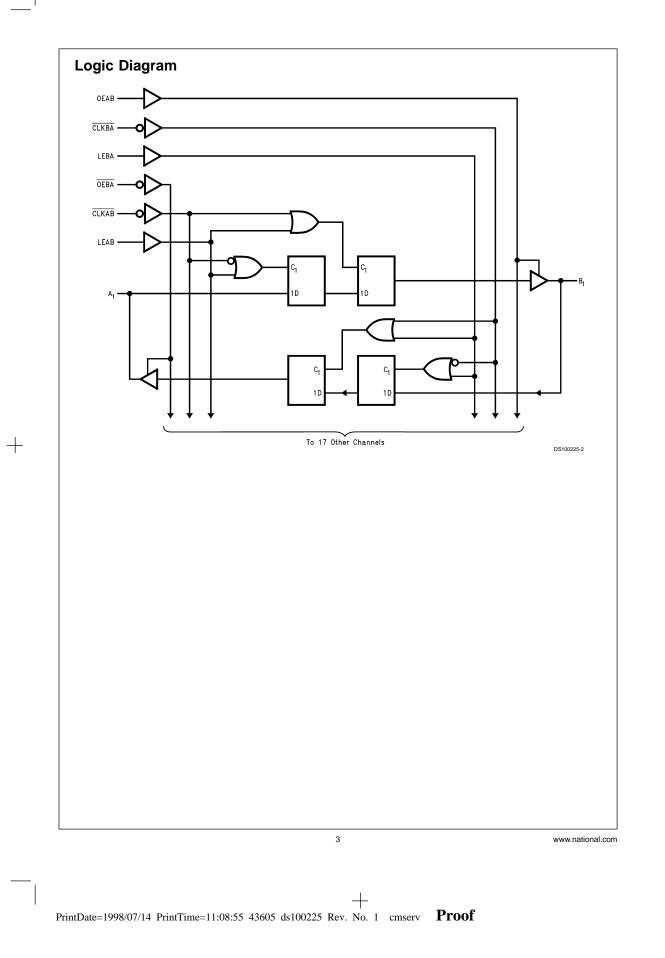
Downloaded from Elcodis.com electronic components distributor

Connection Diagram								
Pin Ass	signment for Cerpack							
0EAB - LEAB - A,- GND - A,2 - V_CC ⁻ A,4 - A,5 - COND - COND -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
A14 A15 V _{CC} A16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Function Table (Note 1)

+

	Inp	Output		
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Х	Z
н	н	Х	L	L
н	Н	Х	н	н
н	L	\downarrow	L	L
н	L	\downarrow	н	н
н	L	н	Х	B _o (Note 2)
н	L	L	Х	B _o (Note 3)


Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

Note 2: Output level before the indicated steady-state input conditions were established.

Note 3: Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

www.national.com

PrintDate=1998/07/14 PrintTime=11:08:55 43605 ds100225 Rev. No. 1 cmserv **Proof**

3

+

Absolute Maximum Ratings (Note 4)

Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 4)	-0.5V to +7.0V
Input Current (Note 4)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-off State	-0.5V to 5.5V
in the HIGH State	–0.5V to V $_{\rm CC}$
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
DC Latchup Source Current	–500 mA

Over Voltage Latchup (I/O)

+

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Note 4: Absolute maximum ratings are values beyond be damaged or have its useful life impaired. Function conditions is not implied.	,
Note 5: Either voltage limit or current limit is suffic	ient to protect inputs.

10V

DC Electrical Characteristics

Symbol	Parameter		ABT16500		Units	V _{cc}	Conditions		
		F	Min	Тур	Max	1			
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	$I_{OH} = -3 \text{ mA}$	
		54ABT	2.0			V	Min	I _{OH} = -24 mA	
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA	
Ι _Η	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 6)	
					5			V _{IN} = V _{CC}	
I _{BVI}	Input HIGH Current Breakdown Test				7	μA	Max	V _{IN} = 7.0V	
I _{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 6)	
					-5			$V_{IN} = 0.0V$	
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA	
								All Other Pins Grounded	
I _{IH} +	Output Leakage Current				50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}, OE = 2.0V$	
I _{OZH}									
I _{IL} +	Output Leakage Current				-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}, OE = 2.0V$	
I _{OZL}									
los	Output Short-Circuit Current		-100		-275	mA	Max	V _{OUT} = 0V	
ICEX	Output High Leakage Current				50	μA	Max	V _{OUT} = V _{CC}	
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND	
I _{CCH}	Power Supply Current				1.0	mA	Max	All Outputs HIGH	
I _{CCL}	Power Supply Current				68	μA	Max	An or Bn Outputs Low	
I _{CCZ}	Power Supply Current				1.0	mA	Max	$\overline{OE}_n = V_{CC},$	
								All Others at V _{CC} or GND	
I _{CCT}	Additional I _{CC} /Input				2.5	mA	Max	$V_{I} = V_{CC} - 2.1V$	
								All Others at V _{CC} or GND	
ICCD	Dynamic I _{CC} No	Load				mA/	Max	Outputs Open	
	(Note 6)				0.23	MHz		Transparent Mode	
								One Bit Toggling, 50% Duty Cycle	

Note 6: Guaranteed, but not tested.

www.national.com

+

4

PrintDate=1998/07/14 PrintTime=11:08:55 43605 ds100225 Rev. No. 1 cmserv **Proof**

4

Min Max	Units	V	A 11-1
		V _{cc}	Conditions C _L = 50 pF; R _L = 500Ω
1.1	V	5.0	$T_A = 25^{\circ}C$ (Note 7)
-1.7	V	5.0	$T_A = 25^{\circ}C$ (Note 7)
	-1.7	-1.7 V	

Note 7: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	54ABT		Units	Fig.
		~	C to +125°C .5V−5.5V		No.
		C _L = 50 pF			
		Min	Max		
f _{max}	Maximum Clock Frequency	150		MHz	
t _{PLH}	Propagation Delay	1.0	6.5	ns	Figure 4
t _{PHL}	A or B to B or A	1.0	7.0		
t _{PLH}	Propagation Delay	1.0	7.0	ns	Figure 4
t _{PHL}	LEAB or LEBA to B or A	1.0	7.8		
t _{PLH}	Propagation Delay	1.0	7.5	ns	Figure 4
t _{PHL}	CLKAB or CLKBA to B or A	1.0	8.0		
t _{PZH}	Propagation Delay	1.0	6.3	ns	Figure 6
t _{PZL}	OEAB or OEBA to B or A	1.0	6.5		
t _{PHZ}	Propagation Delay	1.0	7.2	ns	Figure 6
t _{PLZ}	OEAB or OEBA to B or A	1.0	6.8		

AC Operating Requirements

+

Symbol	Parameter		ABT	Units	Fig. No.
			C to +125°C		
		$V_{CC} = 4.5V - 5.5V$ $C_{L} = 50 \text{ pF}$			
		Min	Max		
t _s (H)	Setup Time,	4.5		ns	Figure 7
t _s (L)	A to CLKAB	4.5			
t _h (H)	Hold Time,	0		ns	Figure 7
t _h (L)	A to CLKAB	0			
t _s (H)	Setup Time,	4.0		ns	Figure 7
t _s (L)	B to CLKBA	4.0			
t _h (H)	Hold Time,	0		ns	Figure 7
t _h (L)	B to CLKBA	0			
t _s (H)	Setup Time, A to LEAB	1.5		ns	Figure 7
t _s (L)	or B to LEBA, CLK High	1.5			
t _h (H)	Hold Time, A to LEAB	1.5			Figure 7
t _h (L)	or B to LEBA, CLK High	1.5		ns	
t _s (H)	Setup Time, A to LEAB	4.5		ns	Figure 7
t _s (L)	or B to LEBA, CLK Low	4.5			
t _h (H)	Hold Time, A to LEAB	1.5		ns	Figure 7
t _h (L)	or B to LEBA, CLK Low	1.5			
t _w (H)	Pulse Width,	3.3		ns	Figure 5
t _w (L)	LEAB or LEBA, High	3.3			

5

www.national.com

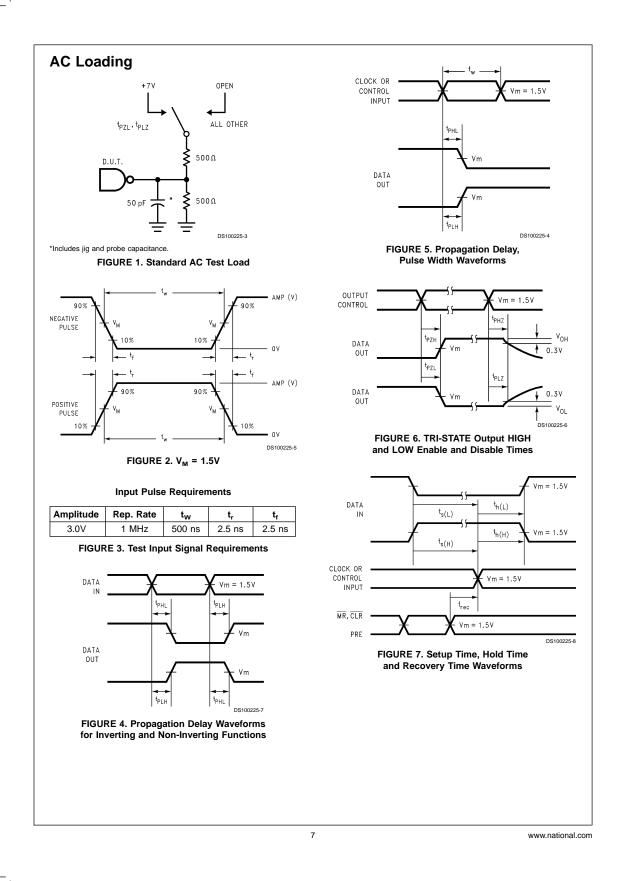
PrintDate=1998/07/14 PrintTime=11:08:55 43605 ds100225 Rev. No. 1 cmserv **Proof**

_

Symbol	Parameter	54	ABT	Units	Fig.
		$T_{A} = -55^{\circ}$	-	No.	
		A	.5V-5.5V		
	C _L = 50 pF				
	Min	Max	1		
t _w (H)	Pulse Width, CLKAB	3.3		ns	Figure 5
t _w (L)	or CLKBA, High or Low	3.3			

Capacitance

Symbol	Parameter	Тур	Units	Conditions, T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0.0V$
C _{I/O} (Note 8)	Output Capacitance	11.0	pF	$V_{CC} = 5.0V$

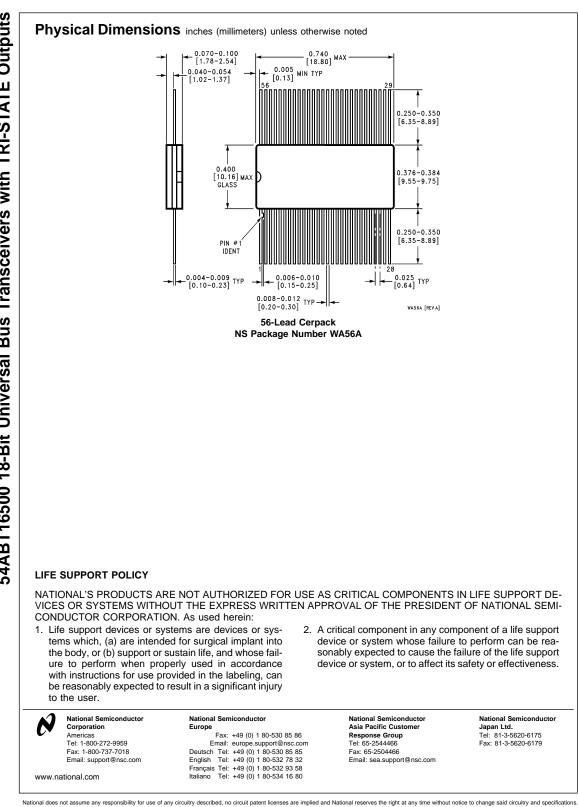

Note 8: C_{I/O} is measured at frequency f = 1 MHz per MIL-STD-883B, Method 3012.

www.national.com

PrintDate=1998/07/14 PrintTime=11:08:55 43605 ds100225 Rev. No. 1 cmserv **Proof**

+

+



PrintDate=1998/07/14 PrintTime=11:08:56 43605 ds100225 Rev. No. 1 cmserv **Proof**

+

7

+

+

8

PrintDate=1998/07/14 PrintTime=11:08:56 43605 ds100225 Rev. No. 1 cmserv **Proof**

Book

Extract End