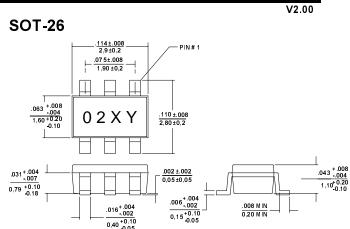


Low Noise Amplifier 1400 - 2000 MHz

Features


- Low Noise Figure: 1.6 dB
- High Input IP3: -6 dBm at 3 V, 6.5 mA bias
- High Gain: 18 dB
- Single Supply: +3 to +8 VDC
- Low Cost SOT-26 Miniature Plastic Package
- Adjustable current: 3 to 20 mA with an external resistor

Description

M/A-COM's AM50-0006 is a high dynamic range, GaAs MMIC, low noise amplifier in a low cost, SOT-26 miniature surface mount, plastic package. It employs external input matching to obtain optimum noise figure performance and operating frequency flexibility. The AM50-0006 also features flexible biasing to control the current consumption vs. dynamic range trade-off. The AM50-0006 can operate from any positive supply voltage in the 3 V to 8 V range. Its current can be controlled over a range of 3 mA to 20 mA with an external resistor.

The AM50-0006 is ideally suited for use where low noise figure, high gain, high dynamic range, and low power consumption are required. Typical applications include receiver front ends in PDC-1500, DCS-1800, DCS-1900, PHS and other PCN/PCS applications. It is also useful as a gain block, buffer, driver and IF amplifier in both fixed and portable PDC, PHS, and PCN/PCS systems.

The AM50-0006 is fabricated using a low-cost 0.5-micron gate length GaAs process. The process features full passivation for increased performance reliability. The AM50-0006 is 100% RF tested to ensure performance specification compliance.

Ordering Information

Part Number	Package
AM50-0006	SOT-26 Plastic Package
AM50-0006TR	Forward Tape and Reel*
AM50-0006PDC	1400-1520 MHz Designer's Kit
AM50-0006PCS	1700-2000 MHz Designer's Kit

* If specific reel size is required, consult factory for part number assignment.

Electrical Specifications¹: T_A =+25°C, Z_0 = 50 Ω , P_{IN} = - 30 dBm

Parameter	Test Conditions	Units	s 1500 MHz			1900 MHz		
			Min.	Тур.	Max.	Min.	Тур.	Max.
Gain	V _{DD} = 3 Volts	dB	15	18	20	15	17.5	20
Noise Figure	V _{DD} = 3 Volts	dB		1.60	2.00		1.65	2.00
Input VSWR				2.2:1			1.5:1	
Output VSWR				1.5:1			1.5:1	
Output 1 dB Compression	V _{DD} = 3 Volts	dBm		1			0	
Input IP3	V _{DD} = 3 Volts	dBm		-5.0			-6.0	
Reverse Isolation		dB		35			35	
Drain current	V _{DD} = 3 Volts	mA	4.5	6.5	10	4.5	6.5	10

1. Using external 120 Ω resistor. See functional block diagrams on pages 2 and 5.

Specifications Subject to Change Without Notice.

M/A-COM, Inc.

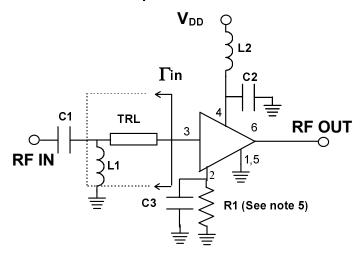
North America: Tel. (800) 366-2266 Fax (800) 618-8883 Asia/Pacific: Tel. +81 3 3263-8761 Fax +81 3 3263-8769 Europe:

: Tel. +44 (1344) 869-595 Fax +44 (1344) 300-020

1

AM50-0006

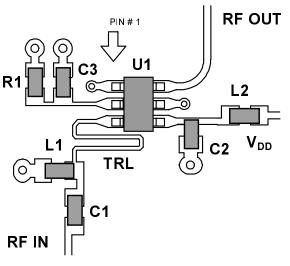
Absolute Maximum Ratings ¹


Parameter	Absolute Maximum
V _{DD}	+10 VDC
Input Power	+17 dBm
Current ²	30 mA
Channel Temperature ³	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

1. Exceeding any one or combination of these limits may cause permanent damage.

2. When pin #2 is used to increase current. (See note 5.)

3. Thermal resistance (θ jc) = +150°C/W.


Functional Block Diagram For 1700-2000 MHz Operation

Recommended PCB Configuration For 1700-2000 MHz Operation

Layout View

2

Specifications Subject to Change Without Notice.

٠

North America: Tel. (800) 366-2266 Fax (800) 618-8883

Asia/Pacific: Tel. +81 3 3263-8761 Fax +81 3 3263-8769 M/A-COM, Inc. Tel. +44 (1344) 869-595 Fax +44 (1344) 300-020

Pin Configuration

Pin No.	Pin Name	Description
1	GND	RF and DC Ground
2	Rext	External Current Control
	Cext	By-Pass Capacitor
3	IN	RF Input of the Amplifier
4	V _{DD}	Positive Supply Voltage
5	GND	RF and DC Ground
6	OUT	RF Output of the Amplifier

Input Reflection Coefficient 1700-2000 MHz Operation

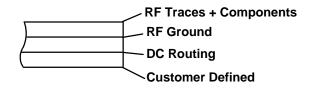
Freq.	1700 MHz	1850 MHz	2000 MHz
Гin (mag)	0.699	0.674	0.649
Гin (ang)	48.47 °	38.68 °	29.27 °

External Circuitry Parts List For 1700-2000 MHz Operation ⁴

Part	Value	Purpose
C1	47 pF	DC Block
C2	470 pF	By-Pass
L1	2.7 nH	Tuning
L2	22 nH	RF Choke
R1	See Note 5	Current control
C3	470 pF	By-Pass

 All external circuitry parts are readily available, low cost surface mount components (.060 in. x .030 in. or .080 in. x .050 in.).

5. Pin 2 allows use of an external resistor to ground for optional, higher current.


For $I_{DD} \sim 5 \text{ mA}$, R1 = 150 ohms;

I_{DD} ~ 6.5 mA, R1 = 120 ohms;

I_{DD} ~ 20 mA, R1 = 27 ohms.

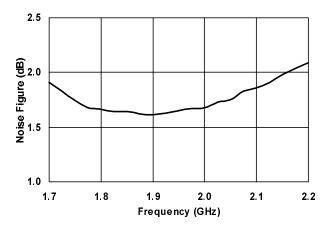
Cross Section View

is 1 ounce copper.

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50 Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.20 mm) yielding a 50 Ω line

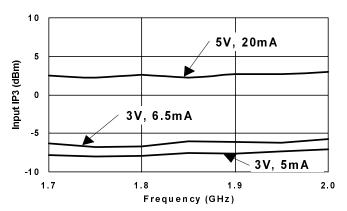
width of 0.015" (0.38 mm). The recommended RF metalization

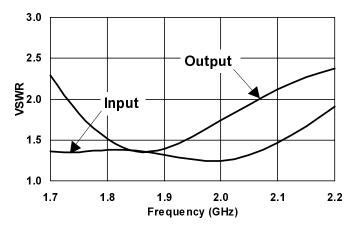
M/A 51 ♦ Europe: Tel. +44 (13 9 Fax +44 (13 **Typical 1700-2000 MHz Performance Data** (when matched at input with Γ in, see page 2)

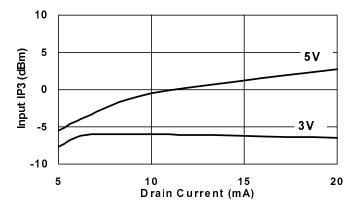

Test Conditions: T_A = +25°C, Z_0 = 50 Ω , unless otherwise specified.

GAIN vs. FREQUENCY

INPUT IP3 vs. FREQUENCY

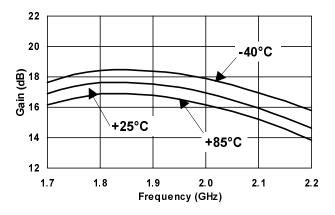




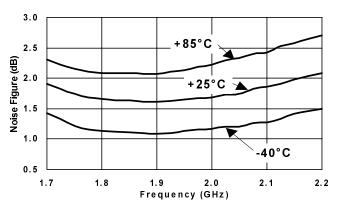


VSWR vs. FREQUENCY (Bias = 3V, 6.5mA)

INPUT IP3 vs. DRAIN CURRENT (Freq. = 1900 MHz)

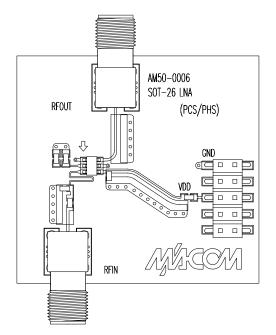


Specifications Subject to Change Without Notice.


 Typical 1700-2000 MHz Performance Data cont. (when matched at input with Γ in, see page 2)

Test Conditions: Bias = 3V, 6.5 mA, Z_0 = 50 Ω , unless otherwise specified.

GAIN vs. TEMPERATURE


NOISE FIGURE vs. TEMPERATURE

Designer's Kit AM50-0006PCS

The AM50-0006 Designer's Kit allows for immediate evaluation of M/A-COM's AM50-0006 tuned for 1700-2000 MHz operation. The Designer's Kit includes an AM50-0006, an evaluation board, and a floppy disk containing typical performance data and a DXF files of the recommended PCB layouts.

The evaluation board consists of the recommended external surface mount circuitry, RF connectors, and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM50-0006PCS evaluation PCB is illustrated below with all functional ports labeled.

AM50-0006PCS EVALUATION BOARD

Evaluation PCB + RF Connector Losses

Port Reference	Approximate RF Loss
LNA Input	0.15 dB @ 1.90 GHz
LNA Output	0.15 dB @ 1.90 GHz

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by of the one or more of the following methods:

- 1. A mating female multi-pin connector (Newark Electronics Stock # 46F-4658, not included).
- 2. Wires soldered to the necessary pins (not included).
- 3. Clip leads (not included).

Specifications Subject to Change Without Notice.

North America: Tel. (800) 366-2266 Fax (800) 618-8883

4

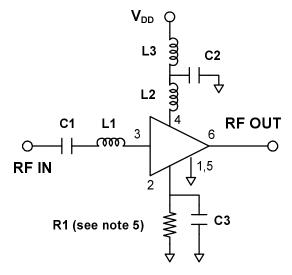
) 618-8883

Asia/Pacific: Tel. +81 3 3263-8761 Fax +81 3 3263-8769 Europe:

٠

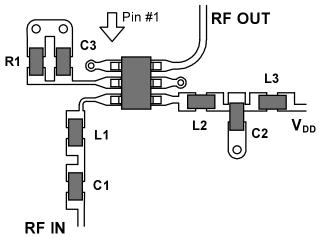
M/A-COM, Inc. Tel. +44 (1344) 869-595 Fax +44 (1344) 300-020

Absolute Maximum Ratings¹


Parameter	Absolute Maximum
V _{DD}	+10 VDC
Input Power	+17 dBm
Current ²	30 mA
Channel Temperature ³	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

1. Exceeding any one or combination of these limits may cause permanent damage.

2. When pin #2 is used to increase current. (See note 5.)


3. Thermal resistance (θ jc) = +150°C/W.

Functional Block Diagram For 1400-1520 MHz Operation

Recommended PCB Configuration For 1400-1520 MHz Operation

Layout View

Specifications Subject to Change Without Notice.

M/A-COM, Inc. North America:

Tel. (800) 366-2266 Fax (800) 618-8883

Asia/Pacific: Tel. +81 3 3263-8761 Fax +81 3 3263-8769

Europe:

٠

5 Tel. +44 (1344) 869-595

Fax +44 (1344) 300-020

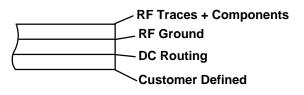
Pin Configuration

Pin No.	Pin Name	Description
1	GND	RF and DC Ground
2	Rext	External Current Control
	Cext	By-Pass Capacitor
3	IN	RF Input of the Amplifier
4	V _{DD}	Positive Supply Voltage
5	GND	RF and DC Ground
6	OUT	RF Output of the Amplifier

External Circuitry Parts List For 1400-1520 MHz Operation ⁴

Part	Value	Purpose
C1	47 pF	DC Block
C2	470 pF	By-Pass
L1	10 nH	Tuning
L2	3.9 nH	Tuning
L3	22 nH	RF Choke
R1	See Note 5	Current control
C3	470 pF	By-Pass

4. All external circuitry parts are readily available, low cost surface mount components (.060 in. x .030 in. or .080 in. x .050 in.).


5. Pin 2 allows use of an external resistor to ground for optional, higher current.

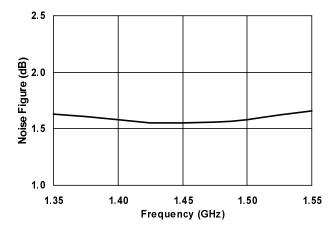
For $I_{DD} \sim 5 \text{ mA}$, R1 = 150 ohms;

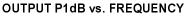
 $I_{DD} \sim 6.5 \text{ mA}, R1 = 120 \text{ ohms};$

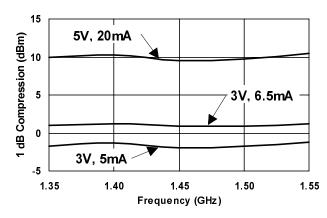
 $I_{DD} \sim 20 \text{ mA}, \text{ R1} = 27 \text{ ohms}.$

Cross Section View

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50 Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.20 mm) yielding a 50 Ω line width of 0.015" (0.38 mm). The recommended RF metalization is 1 ounce copper.

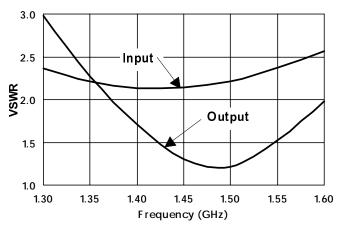

Typical 1400-1520 MHz Performance Data (when matched as shown on page 5)

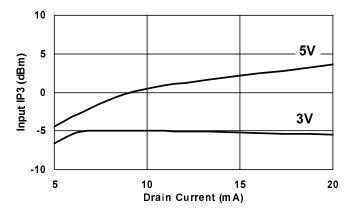

Test Conditions: T_A = +25°C, Z_0 = 50 Ω , unless otherwise specified.


GAIN vs. FREQUENCY

22 20 5V, 20mA (dB) Bain (dB) 916 3V, 6.5mA 14 3V, 5mA 12 1.30 1.35 1.40 1.45 1.50 1.55 1.60 Frequency (GHz)

NOISE FIGURE vs. FREQUENCY (Bias = 3V, 6.5mA)





10 5 Input IP3 (dBm) 5V,20mA 0 3V,6.5mA -5 3V,5mA -10 1.35 1.40 1.45 1.50 1.55 Frequency (GHz)

VSWR vs. FREQUENCY (Bias = 3V, 6.5mA)

INPUT IP3 vs. DRAIN CURRENT (Freq. = 1500 MHz)

Specifications Subject to Change Without Notice.

٠

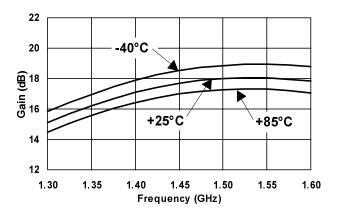
6

North America: Tel. (800) 366-2266 Fax (800) 618-8883

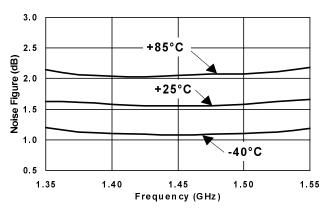
Asia/Pacific: Tel. +81 3 3263-8761 Fax +81 3 3263-8769

Europe:

٠

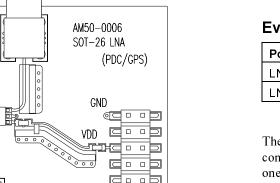

M/A-COM, Inc. Tel. +44 (1344) 869-595 Fax +44 (1344) 300-020

INPUT IP3 vs. FREQUENCY


Typical 1400-1520 MHz Performance Data cont. (when matched as shown on page 5)

Test Conditions: Bias=3V, 6.5 mA, $Z_0 = 50 \Omega$, unless otherwise specified.

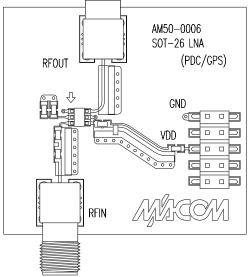
GAIN vs. TEMPERATURE


NOISE FIGURE vs. TEMPERATURE

Designer's Kit AM50-0006PDC

The AM50-0006 Designer's Kit allows for immediate evaluation of M/A-COM's AM50-0006 tuned for 1400-1520 MHz operation. The Designer's Kit includes an AM50-0006, an evaluation board, and a floppy disk containing typical performance data and a DXF files of the recommended PCB layouts.

The evaluation board consists of the recommended external surface mount circuitry, RF connectors, and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM50-0006PDC evaluation PCB is illustrated below with all functional ports labeled.



Evaluation PCB + RF Connector Losses

Port Reference	Approximate RF Loss
LNA Input	0.1 dB @ 1.50 GHz
LNA Output	0.1 dB @ 1.50 GHz

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by of the one or more of the following methods:

- 1. A mating female multi-pin connector (Newark Electronics Stock # 46F-4658, not included).
- 2. Wires soldered to the necessary pins (not included).
- 3. Clip leads (not included).

AM50-0006PDC EVALUATION BOARD

Specifications Subject to Change Without Notice.

M/A-COM, Inc. 7 North America: Tel. (800) 366-2266 Asia/Pacific: Tel. +81 3 3263-8761 Tel. +44 (1344) 869-595 Europe: ٠ Fax (800) 618-8883 Fax +81 3 3263-8769 Fax +44 (1344) 300-020