

Wide Band GaAs MMIC Amplifier 2-8 GHz

MAAM28000-A1

V 2.00

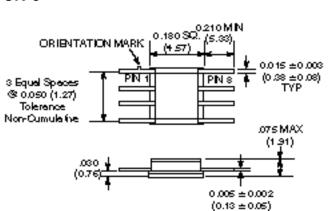
Features

High Gain: 17 dB
Gain Flatness: ±0.5 dB
Single Supply: +10 V

• No External Components Required

• DC Decoupled RF Input and Output

• Small, Low Cost 8-Lead Ceramic Package


Description

M/A-COM's MAAM28000-A1 is a wide band, MMIC amplifier housed in a small 8-lead ceramic package. It includes two distributed gain stages to obtain flat gain and a good, 50-ohm, input and output impedance match over a very wide bandwidth. The MAAM28000-A1 operates from a single +10 V supply. It is fully monolithic, requires no external components, and is provided in a low-cost, user-friendly, microwave package.

The MAAM28000-A1 performs well as a generic IF, driver or buffer amplifier where high gain, excellent linearity and low power consumption are important. Because of its wide bandwidth, the MAAM28000-A1 can be used in numerous commercial and government system applications, such as satellite communications, RLL, EW and radar.

The MAAM28000-A1 is manufactured in-house using a reliable, 0.5-micron, GaAs MESFET process. This product is 100% RF tested to ensure compliance to performance specifications.

CR-3

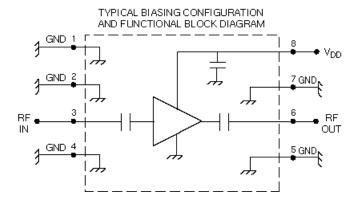
Bottom of case is AC ground.
Dimensions in () are in mm.
Unless Otherwise Noted: $200 = \pm 0.010$ ($200 = \pm 0.25$) $200 = \pm 0.02$ ($200 = \pm 0.05$)

Ordering Information

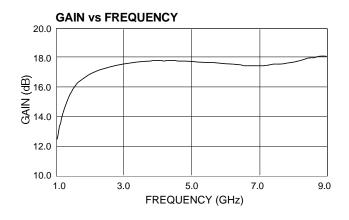
Part Number	Package
MAAM28000-A1	8-Lead Ceramic
MAAM28000-A1G	Gull Wing

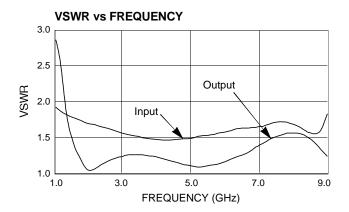
Electrical Specifications

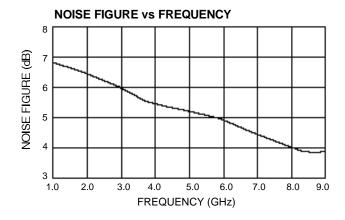
Test Conditions: $T_A = +25$ °C, $Z_O = 50 \Omega$, $V_{DD} = +10 V$, $P_{IN} = -30 dBm$


Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain		dB	14	17	
Noise Figure	2 - 4 GHz	dB		6.5	8.0
	4 - 6 GHz	dB		5.5	6.5
	6 - 8 GHz	dB		4.5	6.0
Gain Flatness		dB		± 0.5	
Input VSWR				1.6:1	
Output VSWR				1.5:1	
Output 1 dB Compression		dBm		+14	
Input IP ₃		dBm		+7	
Reverse Isolation		dB		35	
Bias Current		mA		70	100

Absolute Maximum Ratings¹


Parameter	Absolute Maximum		
VDD Input Power Current Channel Temperature Operating Temperature ²	+14 volts +20 dBm 150 mA +150°C -55°C to +100°C		
Storage Temperature	-65°C to +150°C		


- 1. Operation of this device outside these limits may cause permanent damage.
- 2. Typical thermal resistance (θ jc) = +45°C/W


Schematic

Typical Performance @ +25°C

