# 

# Am79C984A

enhanced Integrated Multiport Repeater (eIMR<sup>™</sup>)

### **DISTINCTIVE CHARACTERISTICS**

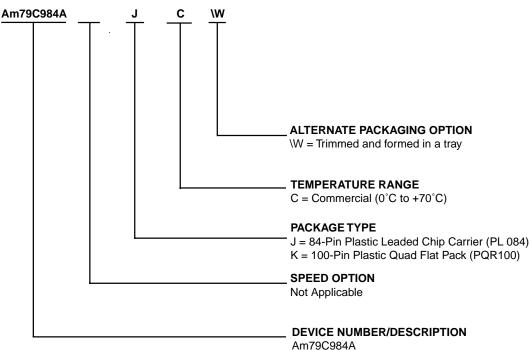
- Repeater functions comply with IEEE 802.3 Repeater Unit specifications
- Four integral 10BASE-T transceivers with onchip filtering that eliminate the need for external filter modules on the 10BASE-T transmit-data (TXD) and receive-data (RXD) lines
- One Reversible Attachment Unit Interface (RAUI<sup>™</sup>) port that can be used either as a standard IEEE-compliant AUI port for connection to a Medium Attachment Unit (MAU), or as a reversed port for direct connection to a Media Access Controller (MAC)
- Low cost suitable for non-managed multiport repeater designs
- Expandable to increase number of repeater ports with support for up to seven elMR devices without the need for an external arbiter
- All ports can be individually isolated (partitioned) in response to excessive collision conditions or fault conditions.

### **GENERAL DESCRIPTION**

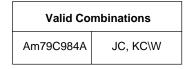
The enhanced Integrated Multiport Repeater (eIMR) device is a VLSI integrated circuit that provides a system-level solution to designing non-managed multiport repeaters. The device integrates the repeater functions specified in Section 9 of the IEEE 802.3 standard and Twisted Pair Transceiver functions complying with the 10BASE-T standard.

- Full LED support for individual port status LEDs and network utilization LEDs
- Programmable extended distance mode on the RXD lines, allowing connection to cables longer than 100 meters
- Twisted Pair Link Test capability conforming to the 10BASE-T standard. The Link Test function and the transmission of Link Test pulses can be optionally disabled through the control port to allow devices that do not implement the Link Test function to work with the eIMR device.
- Programmable option of automatic polarity detection and correction permits automatic recovery due to wiring errors
- Full amplitude and timing regeneration for retransmitted waveforms
- CMOS device with a single +5-V supply

The eIMR device provides four Twisted Pair (TP) ports and one RAUI port for direct connection to a MAC. The total number of ports per repeater unit can be increased by connecting multiple eIMR devices through their expansion ports, hence, minimizing the total cost per repeater port.


The device is fabricated in CMOS technology and requires a single +5-V supply.

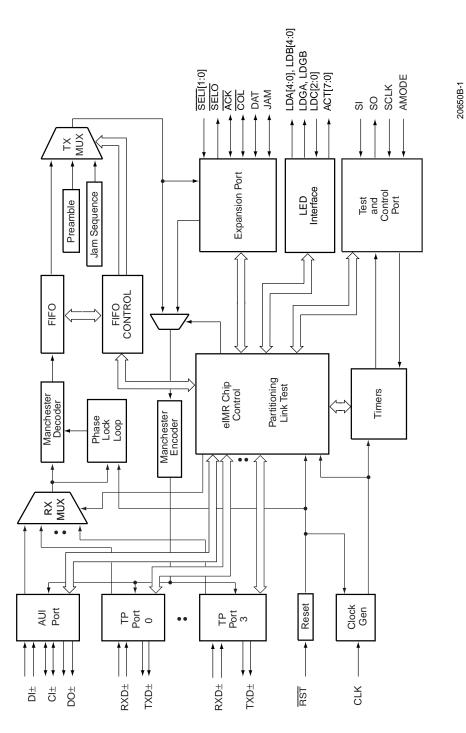
This document contains information on a product under development at Advanced Micro Devices. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.


### **ORDERING INFORMATION**

### **Standard Products**

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.








#### Valid Combinations

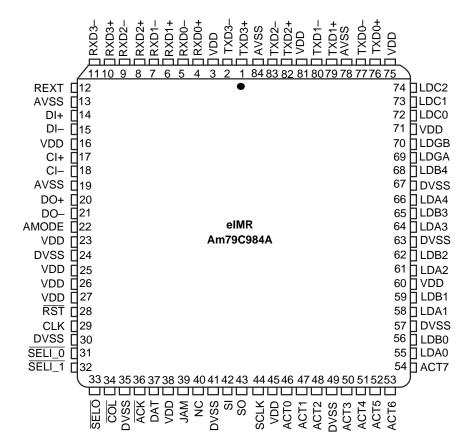
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

# **BLOCK DIAGRAM**



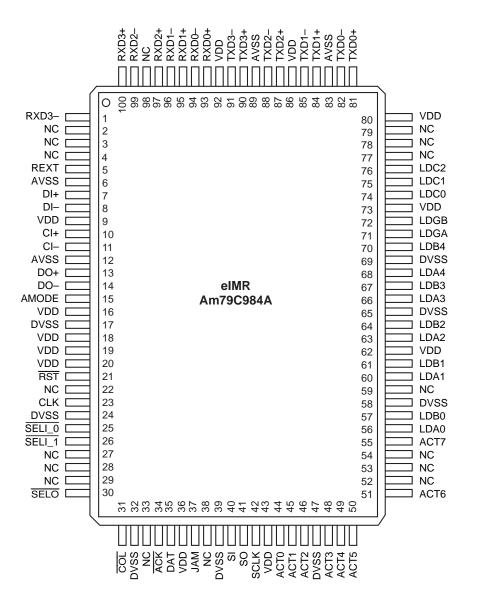
Am79C984A

# **RELATED AMD PRODUCTS**


| Part No.  | Description                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------|
| Am7990    | Local Area Network Controller for Ethernet (LANCE)                                                       |
| Am7992B   | Serial Interface Adapter (SIA)                                                                           |
| Am7996    | IEEE 802.3/Ethernet/Cheapernet Transceiver                                                               |
| Am79C90   | CMOS Local Area Network Controller for Ethernet (C-LANCE)                                                |
| Am79C98   | Twisted Pair Ethernet Transceiver (TPEX)                                                                 |
| Am79C100  | Twisted Pair Ethernet Transceiver Plus (TPEX+)                                                           |
| Am79C981  | Integrated Multiport Repeater Plus (IMR+™)                                                               |
| Am79C982  | basic Integrated Multiport Repeater (bIMR™)                                                              |
| Am79C987  | Hardware Implemented Management Information Base (HIMIB™)                                                |
| Am79C988  | Quad Integrated Ethernet Transceiver (QuIET™)                                                            |
| Am79C900  | Integrated Local Area Communications Controller (ILACC™)                                                 |
| Am79C940  | Media Access Controller for Ethernet (MACE™)                                                             |
| Am79C960  | PCnet <sup>™</sup> -ISA Single-Chip Ethernet Controller (for ISA bus)                                    |
| Am79C961  | PCnet <sup>™</sup> -ISA+ Single-Chip Ethernet Controller for ISA (with Microsoft® Plug n' Play® Support) |
| Am79C961A | PCnet <sup>™</sup> -ISA II Full Duplex Single-Chip Ethernet Controller for ISA                           |
| Am79C965  | PCnet™-32 Single-Chip 32-Bit Ethernet Controller                                                         |
| Am79C970  | PCnet <sup>™</sup> -PCI Single-Chip Ethernet Controller (for PCI bus)                                    |
| Am79C970A | PCnet <sup>™</sup> -PCI II Full Duplex Single-Chip Ethernet Controller (for PCI bus)                     |
| Am79C974  | PCnet <sup>™</sup> -SCSI Combination Ethernet and SCSI Controller for PCI Systems                        |
| Am79C983  | Integrated Multiport Repeater 2 (IMR2 <sup>™</sup> )                                                     |
| Am79C985  | enhanced Integrated Multiport Repeater Plus (eIMR+™)                                                     |

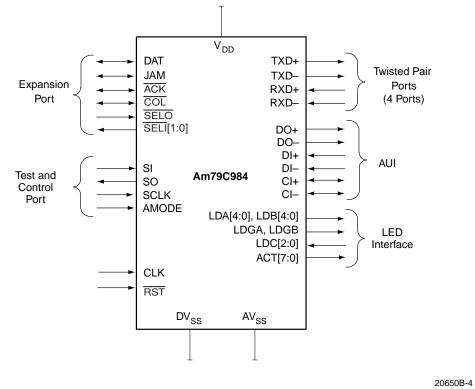
# TABLE OF CONTENTS

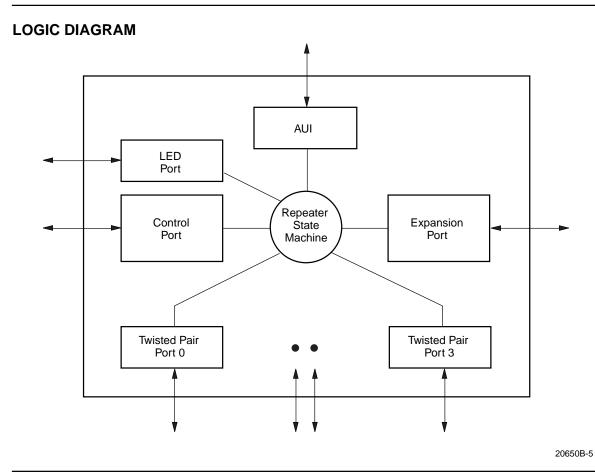
| DISTINCTIVE CHARACTERISTICS              |      |
|------------------------------------------|------|
| ORDERING INFORMATION                     | 1-30 |
| STANDARD PRODUCTS                        |      |
| BLOCK DIAGRAM                            |      |
| RELATED AMD PRODUCTS.                    |      |
| CONNECTION DIAGRAM (PL 084)              |      |
| CONNECTION DIAGRAM (PQR100)              | 1-36 |
| LOGIC SYMBOL                             |      |
| LOGIC DIAGRAM                            |      |
| PIN DESIGNATIONS (PL 084).               |      |
| Listed by Pin Number.                    |      |
| PIN DESIGNATIONS (PQR100)                |      |
| Listed by Pin Number.                    |      |
| PIN DESCRIPTION                          |      |
| AUI Port                                 | 1-40 |
| Twisted Pair Ports                       |      |
| Expansion Bus                            |      |
| Control Port                             |      |
| LED Interface                            |      |
| Miscellaneous Pins                       |      |
| FUNCTIONAL DESCRIPTION                   |      |
| Basic Repeater Functions                 |      |
| Repeater Function                        |      |
| Signal Regeneration                      |      |
| Jabber Lockup Protection                 |      |
| Collision Handling                       |      |
| Fragment Extension.                      |      |
| Auto Partitioning/Reconnection           |      |
| Detailed Functions                       |      |
| Reset                                    |      |
| AUI Port                                 |      |
| TP Port Interface                        |      |
| Twisted Pair Transmitters                |      |
| Twisted Pair Receivers                   |      |
| Link Test                                |      |
| Polarity Reversal                        | 1-45 |
| Visual Status Monitoring (LED) Support   |      |
| Network Activity Display.                | 1-46 |
| Expansion Bus Interface                  | 1-48 |
| Internal Arbitration Mode                | 1-48 |
| IMR+ Mode                                | 1-48 |
| Control Functions                        | 1-49 |
| Command/Response Timing                  | 1-50 |
| Control Commands                         | 1-50 |
| SET (Write Commands)                     | 1-52 |
| Chip Programmable Option                 | 1-52 |
| Alternate AUI Partitioning Algorithm     | 1-52 |
| Alternate TP Partitioning Algorithm      | 1-52 |
| AUI Port Disable                         |      |
| AUI Port Enable                          |      |
| TP Port Disable                          |      |
| TP Port Enable                           |      |
| Disable Link Test Function (Per TP port) |      |
| Enable Link Test Function (Per TP port)  |      |
| Disable Link Pulse (Per TP Port)         | 1-52 |


| Enable Link Pulse (Per TP Port)                                              |
|------------------------------------------------------------------------------|
| Disable Automatic Receiver Polarity Reversal (Per TP Port)                   |
| Enable Automatic Receiver Polarity Reversal (Per TP Port)                    |
| Disable Receiver Extended Distance Mode (Per TP Port)                        |
| Enable Receiver Extended Distance Mode (Per TP Port)                         |
| Disable Software Override of LEDs 5                                          |
| (Per Port - AUI and TP, Global)1-53                                          |
| Enable Software Override of Bank A LEDs (Per Port - AUI and TP, Global) 1-53 |
| Enable Software Override of Bank B LEDs (Per Port - AUI and TP, Global) 1-54 |
| Software Override of LED Blink Rate                                          |
| GET (Read Commands)1-54                                                      |
| AUI Port(s) Status                                                           |
| Alternate AUI Port(s) Status                                                 |
| TP Port Partitioning Status                                                  |
| Bit Rate Error Status of TP Ports1-54                                        |
| Link Test Status of TP ports 1-55                                            |
| Receive Polarity Status of TP Ports                                          |
| MJLP Status                                                                  |
| Version                                                                      |
| SYSTEMS APPLICATIONS                                                         |
| eIMR to TP Port Connection1-55                                               |
| Twisted Pair Transmitters                                                    |
| Twisted Pair Receivers1-55                                                   |
| MAC Interface                                                                |
| Internal Arbitration Mode Connection1-57                                     |
| IMR+ Mode External Arbitration                                               |
| Visual Status Display                                                        |
| ABSOLUTE MAXIMUM RATINGS1-60                                                 |
| OPERATING RANGES                                                             |
| DC CHARACTERISTICS over operating ranges unless otherwise specified          |
| SWITCHING CHARACTERISTICS                                                    |
| KEY TO SWITCHING WAVEFORMS                                                   |
| SWITCHING WAVEFORMS1-64                                                      |
| SWITCHING TEST CIRCUIT1-69                                                   |
|                                                                              |

### **CONNECTION DIAGRAM (PL 084)**




20650B-2


# **CONNECTION DIAGRAM (PQR100)**



20650B-3

## LOGIC SYMBOL





Am79C984A

# **PIN DESIGNATIONS (PL 084)**

# Listed by Pin Number

| Pin No. | Pin Name |
|---------|----------|---------|----------|---------|----------|---------|----------|
| 1       | TXD3+    | 22      | AMODE    | 43      | SO       | 64      | LDA3     |
| 2       | TXD3-    | 23      | VDD      | 44      | SCLK     | 65      | LDB3     |
| 3       | VDD      | 24      | DVSS     | 45      | VDD      | 66      | LDA4     |
| 4       | RXD0+    | 25      | VDD      | 46      | ACT0     | 67      | DVSS     |
| 5       | RXD0-    | 26      | VDD      | 47      | ACT1     | 68      | LDB4     |
| 6       | RXD1+    | 27      | VDD      | 48      | ACT2     | 69      | LDGA     |
| 7       | RXD1-    | 28      | RST      | 49      | DVSS     | 70      | LDGB     |
| 8       | RXD2+    | 29      | CLK      | 50      | ACT3     | 71      | VDD      |
| 9       | RXD2-    | 30      | DVSS     | 51      | ACT4     | 72      | LDC0     |
| 10      | RXD3+    | 31      | SELI_0   | 52      | ACT5     | 73      | LDC1     |
| 11      | RXD3-    | 32      | SELI_1   | 53      | ACT6     | 74      | LDC2     |
| 12      | REXT     | 33      | SELO     | 54      | ACT7     | 75      | VDD      |
| 13      | AVSS     | 34      | COL      | 55      | LDA0     | 76      | TXD0+    |
| 14      | DI+      | 35      | DVSS     | 56      | LDB0     | 77      | TXD0-    |
| 15      | DI-      | 36      | ACK      | 57      | DVSS     | 78      | AVSS     |
| 16      | VDD      | 37      | DAT      | 58      | LDA1     | 79      | TXD1+    |
| 17      | CI+      | 38      | VDD      | 59      | LDB1     | 80      | TXD1-    |
| 18      | CI-      | 39      | JAM      | 60      | VDD      | 81      | VDD      |
| 19      | AVSS     | 40      | NC       | 61      | LDA2     | 82      | TXD2+    |
| 20      | DO+      | 41      | DVSS     | 62      | LDB2     | 83      | TXD2-    |
| 21      | DO-      | 42      | SI       | 63      | DVSS     | 84      | AVSS     |

# **PIN DESIGNATIONS (PQR100)**

# Listed by Pin Number

| Pin No. | Pin Name |
|---------|----------|---------|----------|---------|----------|---------|----------|
| 1       | RXD3-    | 26      | SELI_1   | 51      | ACT6     | 76      | LDC2     |
| 2       | NC       | 27      | NC       | 52      | NC       | 77      | NC       |
| 3       | NC       | 28      | NC       | 53      | NC       | 78      | NC       |
| 4       | NC       | 29      | NC       | 54      | NC       | 79      | NC       |
| 5       | REXT     | 30      | SELO     | 55      | ACT7     | 80      | VDD      |
| 6       | AVSS     | 31      | COL      | 56      | LDA0     | 81      | TXD0+    |
| 7       | DI+      | 32      | DVSS     | 57      | LDB0     | 82      | TXD0-    |
| 8       | DI-      | 33      | NC       | 58      | DVSS     | 83      | AVSS     |
| 9       | VDD      | 34      | ACK      | 59      | NC       | 84      | TXD1+    |
| 10      | CI+      | 35      | DAT      | 60      | LDA1     | 85      | TXD1-    |
| 11      | CI-      | 36      | VDD      | 61      | LDB1     | 86      | VDD      |
| 12      | AVSS     | 37      | JAM      | 62      | VDD      | 87      | TXD2+    |
| 13      | DO+      | 38      | NC       | 63      | LDA2     | 88      | TXD2-    |
| 14      | DO-      | 39      | DVSS     | 64      | LDB2     | 89      | AVSS     |
| 15      | AMODE    | 40      | SI       | 65      | DVSS     | 90      | TXD3+    |
| 16      | VDD      | 41      | SO       | 66      | LDA3     | 91      | TXD3-    |
| 17      | DVSS     | 42      | SCLK     | 67      | LDB3     | 92      | VDD      |
| 18      | VDD      | 43      | VDD      | 68      | LDA4     | 93      | RXD0+    |
| 19      | VDD      | 44      | ACT0     | 69      | DVSS     | 94      | RXD0-    |
| 20      | VDD      | 45      | ACT1     | 70      | LDB4     | 95      | RXD1+    |
| 21      | RST      | 46      | ACT2     | 71      | LDGA     | 96      | RXD1-    |
| 22      | NC       | 47      | DVSS     | 72      | LDGB     | 97      | RXD2+    |
| 23      | CLK      | 48      | ACT3     | 73      | VDD      | 98      | NC       |
| 24      | DVSS     | 49      | ACT4     | 74      | LDC0     | 99      | RXD2-    |
| 25      | SELI_0   | 50      | ACT5     | 75      | LDC1     | 100     | RXD3+    |

#### Notes:

1. Pin 40 has a bonding option depending on internal device name.

2. NC = No Connection.

### **PIN DESCRIPTION**

#### **AUI Port**

#### DI+, DI– Data In Differential Input

DI± are differential, Manchester receiver pins. The signals comply with IEEE 802.3, Section 7.

#### DO+, DO-Data Out Differential Output

 $\rm DO\pm$  are differential, Manchester output driver pins. The signals comply with IEEE 802.3, Section 7.

#### CI+, CI– Collision Input Differential Input/Output

 $Cl\pm$  are differential, Manchester I/O signals. As an input, CI is a collision-receive indicator. As an output, CI generates a 10-MHz signal if the eIMR device senses a collision.

# **Twisted Pair Ports**

### TXD+<sub>0-3</sub>, TXD-<sub>0-3</sub> Transmit Data Differential Output

TXD± are 10BASE-T port differential drivers (4 ports).

# RXD+<sub>0-3</sub>, RXD-<sub>0-3</sub>

# Receive Data

### **Differential Input**

 $RXD\pm$  are 10BASE-T port differential receive inputs (4 ports).

# **Expansion Bus**

# DAT

#### Data Input/Output/3-State

If the  $\overline{SELO}$  and  $\overline{ACK}$  pins are asserted during noncollision conditions, the eIMR device drives NRZ data onto the DAT line, regenerating the preamble if necessary. During a collision, when JAM is HIGH, DAT is used to differentiate between single-port (DAT=1) and multiport (DAT=0) collisions. DAT is an output when  $\overline{ACK}$  is asserted and the eIMR device's ports are active; DAT is an input when  $\overline{ACK}$  is asserted and the ports are inactive. If  $\overline{ACK}$  is not asserted, DAT is in the high-impedance state. It is recommended that DAT be pulled up or down via a high value resistor.

#### JAM Jam

# Input/Output/3-State

The active eIMR device drives JAM HIGH, if it detects a collision condition on one or more of its ports. The

state of the DAT pin is used in conjunction with JAM to indicate a single port (DAT =1) or multiport (DAT=0) collision. JAM is in the high-impedance state if neither the SEL nor ACK signal is asserted. It is recommended that JAM be pulled up or down via a high value resistor.

#### SELI<sub>0-1</sub> Select In Input, Active LOW

When the expansion bus is configured for Internal Arbitration mode, these signals indicate that another eIMR device is active;  $\overline{SELI}_0$  or  $\overline{SELI}_1$  is driven by  $\overline{SELO}$  from the upstream device. At reset,  $\overline{SELI}_0$  selects between the Internal Arbitration mode and the IMR+ mode of the expansion bus; a HIGH selects the Internal Arbitration mode and a LOW selects the IMR+ mode.

| SELI_1 | SELI_0 | Arbitration<br>Mode |
|--------|--------|---------------------|
| Х      | 1      | Internal            |
| Х      | 0      | IMR+                |

#### SELO Select Out Output, Active LOW

If the expansion bus is configured for Internal Arbitration mode, an eIMR device drives this pin LOW when it is active or when either of its  $\overline{SELI}_{0-1}$  pins is LOW. An active eIMR device is defined as having one or more ports receiving or colliding and/or is still transmitting data from the internal FIFO, or extending a packet to the minimum of 96 bit times. When the expansion bus is configured for IMR+ mode,  $\overline{SELO}$  is active when the eIMR device is active (acquiring the functionality of the REQ pin on the Am79C971 IMR+ device).

# ACK

#### Acknowledge Input/Output, Active LOW, Open Drain

This signal is asserted to indicate that an eIMR device is active. It also signals to the other eIMR devices the presence of a valid collision status on the JAM line and valid data on the DAT line. When the eIMR device is configured for Internal Arbitration mode,  $\overline{ACK}$  is an I/O, and must be pulled to VDD via a minimum equivalent resistance of 1 k $\Omega$ . When the eIMR device is configured for IMR+ mode,  $\overline{ACK}$  is an input driven by an external arbiter.

# COL

#### Collision Input/Output, Active LOW, Open Drain

When asserted,  $\overline{\text{COL}}$  indicates that more than one eIMR device is active. Each eIMR device generates the Collision Jam sequence independently. When the eIMR device is configured for Internal Arbitration mode,  $\overline{\text{COL}}$  is

an I/O and must be pulled to VDD via a minimum equivalent resistance of 1 k $\Omega$ . When the eIMR device expansion port is configured for IMR+ mode,  $\overline{COL}$  is an input driven by an external arbiter.

# **Control Port**

# AMODE

# AUI Mode

#### Input

At reset, this pin sets the AUI port to either normal or reversed mode. If AMODE is LOW at the rising edge of  $\overline{\text{RST}}$ , the AUI port is set to the normal mode; if AMODE is HIGH, the AUI port is set to the reversed mode.

#### SCLK Serial Clock In Input

Serial data (input or output) is clocked (in or out) on the rising edge of the signal on this pin. SCLK is asynchronous to CLK and can operate at frequencies up to 10 MHz.

# SI

# Serial In

### Input

The SI pin is used as a test/control serial input port. Control commands are clocked in on this pin synchronous to SCLK input.

At reset, SI sets the state of the Automatic Polarity Reversal function. If SI is HIGH at the rising edge of  $\overline{\text{RST}}$ , Automatic Polarity Reversal is disabled. If SI is LOW at the rising edge of  $\overline{\text{RST}}$ , Automatic Polarity Reversal is enabled.

#### SO Serial Out Output

The SO pin is used as a control command serial output port. Responses to control commands are clocked out on this pin synchronous to the SCLK input.

# **LED Interface**

#### LDA<sub>0-4</sub>, LDB<sub>0-4</sub> LED Drivers Output, Open Drain

 $LDA_{0-4}$  and  $LDB_{0-4}$  drive LED Bank A and LED Bank B, respectively.  $LDA_0$  and  $LDB_0$  indicate the status of the AUI port;  $LDA_{1-4}$  and  $LDB_{1-4}$  indicate the status of the four TP ports. The port attributes monitored by  $LDA_{0-4}$ and  $LDB_{0-4}$  are programmed by three pins,  $LDC_{0-2}$ .

#### LDGA Global LED Driver, Bank A Output, Open Drain

LDGA is the Global LED driver for LED Bank A. The signal represents global CRS or COL conditions. In a

multiple-eIMR configuration, LDGA from each of the eIMR devices can be tied together to drive a single global LED in Bank A.

# LDGB

# Global LED Driver, Bank B Output, Open Drain

LDGB is the Global LED driver for LED Bank B. The signal represents global CRS or JAB conditions. In a multiple eIMR configuration, LDGB from each of the eIMR devices can be tied together to drive a single global LED in Bank B.

### LDC<sub>0-2</sub> LED Control Input

These pins select the attributes that will be displayed on LDA<sub>0-4</sub>, LDB<sub>0-4</sub>, LDGA, and LDGB. If an LED is programmed to display two attributes, the attribute associated with the periodic blink takes precedence.

#### ACT<sub>0-7</sub> Activity Display Output

These signals drive the activity LEDs, which indicate the percentage of network utilization. The display is updated every 250 ms.

# **Miscellaneous Pins**

#### RST Reset

# Input, Active LOW

When  $\overline{\text{RST}}$  is LOW, the eIMR device resets to its default state. On the rising (trailing) edge of  $\overline{\text{RST}}$ , the eIMR also monitors the state of the  $\overline{\text{SELI}}_{0-1}$ , SI, and AMODE pins, to configure the operating mode of the device. In multiple eIMR systems, the falling (leading) edge of the  $\overline{\text{RST}}$ signal must be synchronized to CLK.

# CLK

#### Master Clock In Input

This pin is a 20-MHz clock input.

### REXT

# External Reference

This pin is used for an internal current reference. It must be tied to VDD via a 13-k $\Omega$  resistor with 1% tolerance.

#### VDD Power Power Pin

This pin supplies power to the device.

#### AVSS Analog Ground Ground Pin

This pin is the ground reference for the differential receivers and drivers.

DVSS Digital Ground Ground Pin

This pin is the ground reference for all the digital logic in the eIMR device.

### FUNCTIONAL DESCRIPTION

The Am79C984A eIMR device is a single-chip implementation of an IEEE 802.3/Ethernet repeater (or hub). It is offered with four integral 10BASE-T ports plus one RAUI port comprising the basic repeater. The eIMR device is also expandable, enabling the implementation of high port count repeaters based on several eIMR devices.

The eIMR chip complies with the full set of repeater basic functions as defined in Section 9 of ISO 8802.3 (ANSI/IEEE 802.3c). The basic repeaters functions are summarized in the paragraphs below.

### **Basic Repeater Functions**

The Am79C984A chip implements the basic repeater functions as defined by Section 9.5 of the ANSI/IEEE 802.3 specification.

#### **Repeater Function**

If any single network port senses the start of a valid packet on its receive lines, the eIMR device will retransmit the received data to all other enabled network ports (except when contention exists among any of the ports or when the receive port is partitioned). To allow multiple eIMR device configurations, the data will also be repeated on the expansion bus data line (DAT).

#### **Signal Regeneration**

When retransmitting a packet, the eIMR device ensures that the outgoing packet complies with the IEEE 802.3 specification in terms of preamble structure and timing characteristics. Specifically, data packets repeated by the eIMR device will contain a minimum of 56 preamble bits before the Start-of-Frame Delimiter. In addition, the eIMR restores the voltage amplitude of the repeated waveform to levels specified in the IEEE 802.3 specification. Finally, the eIMR device restores signal symmetry to repeated data packets, removing jitter and distortion caused by the network cabling. Jitter present at the output of the AUI port will be better than 0.5 ns; jitter at the TP outputs will be better than 1.5 ns.

The start-of-packet propagation delay for a repeater set is the time delay between the first edge transition of a data packet on its input port to the first edge transition of the repeated packet on its output ports. The start-ofpacket propagation delay for the eIMR is within the specification given in Section 9.5.5.1 of the IEEE 802.3 standard.

#### **Jabber Lockup Protection**

The eIMR device implements a built-in jabber protection scheme to ensure that the network is not disabled by the transmission of excessively long data packets. This protection scheme causes the eIMR device to interrupt transmission for 96 bit-times if the device has been transmitting continuously for more than 65,536 bit times. This is referred to as MAU Jabber Lockup Protection (MJLP). The MJLP status for the eIMR device can be read through the Control Port, using the Get MJLP Status command.

#### **Collision Handling**

The eIMR device will detect and respond to collision conditions as specified in the IEEE 802.3 specification. Repeater configurations consisting of multiple eIMR devices also comply with the IEEE 802.3 specification, using status signals provided by the expansion bus. In particular, a repeater based on one or more eIMR devices will handle the transmit collision and one-port-left collision conditions correctly, as specified in Section 9 of the IEEE 802.3 specification.

#### **Fragment Extension**

If the total packet length received is less than 96 bits, including preamble, the eIMR device will extend the repeated packet length to 96 bits by appending a Jam sequence to the original fragment.

#### Auto Partitioning/Reconnection

Any of the TP ports or the AUI port can be partitioned if the duration or frequency of collisions becomes excessive. The eIMR device will continue to transmit data packets to a partitioned port, but will not respond, as a repeater, to activity on the partitioned port's receiver. The eIMR device will monitor the port and reconnect it once certain criteria are met. The criteria for reconnection are specified by the IEEE 802.3 standard. In addition to the standard reconnection algorithm, the eIMR device implements an alternative reconnection algorithm, which provides a more robust partitioning function for the TP ports and/or AUI port. The eIMR device partitions each TP port and the AUI port separately and independently of other network ports.

The eIMR device will partition an enabled network port if either of the following conditions occurs at that port:

- A collision condition exists continuously for more than 2048 bit times. (AUI port—SQE signal active; TP port—simultaneous transmit and receive).
- b. A collision condition occurs during each of 32 consecutive attempts to transmit to that port.

In the AUI port, a collision condition is indicated by an active SQE signal. In a TP port, a collision condition is indicated when the port is simultaneously attempting to transmit and receive.

Once a network port is partitioned, the eIMR device will reconnect that port, according to the selected reconnection algorithm, as follows:

a. Standard reconnection algorithm—A data packet longer than 512-bit times (nominal) is transmitted or received by the partitioned port without a collision.

b. Alternative reconnection algorithm—A data packet longer than 512-bit times (nominal) is transmitted by the partitioned port without a collision.

A partitioned port can also be reconnected by disabling and re-enabling the port.

All TP ports use the same reconnection algorithm; either they must all use the standard algorithm, or they must all use the alternative reconnection algorithm. However, the reconnection algorithm for the AUI port is programmed independently from that of the TP ports.

# **Detailed Functions**

#### Reset

The eIMR device enters the reset state when the reset ( $\overline{RST}$ ) pin is driven LOW. After the initial application of power, the  $\overline{RST}$  pin must be held LOW for a minimum of 150 µs. If the  $\overline{RST}$  pin is subsequently asserted while

power is maintained to the eIMR device, a reset duration of only 4  $\mu$ s is required. This allows the eIMR device to reset its internal logic. During reset, the eIMR registers are set to their default values. Also during reset, the eIMR device sets the output signals to their inactive state; that is, all analog outputs are placed in their idle state, no bidirectional signals are driven, all active-HIGH signals are driven LOW and all active-LOW signals are driven HIGH. In a multiple eIMR system, the reset signal must be synchronized to CLK. See Figure 10 in the *Systems Applications* section.

The elMR device also monitors the state of the  $\overline{SELI}_{0-1}$ , SI, and AMODE pins on the rising (trailing) edge of RST to configure the operating mode of the device.

Table 1 summarizes the state of the eIMR chip following reset.

| Function                                      | State after Reset                                      | Pull Up/Pull Down |
|-----------------------------------------------|--------------------------------------------------------|-------------------|
| Active-LOW Outputs                            | HIGH                                                   | No                |
| Active-HIGH Outputs                           | LOW                                                    | No                |
| SO Output                                     | HIGH                                                   | No                |
| DAT, JAM                                      | HIGH IMPEDANCE                                         | Either            |
| Transmitters (TP and AUI)                     | IDLE                                                   | No                |
| Receivers (TP and AUI)                        | ENABLED                                                | Terminated        |
| AUI Partitioning/Reconnection Algorithm       | STANDARD ALGORITHM                                     | N/A               |
| TP Partitioning/Reconnection Algorithm        | STANDARD ALGORITHM                                     | N/A               |
| Link Test Functions for TP Ports              | ENABLED, TP PORTS IN LINK FAIL                         | N/A               |
| Automatic Receiver Polarity Reversal Function | DISABLED IF SI PIN IS HIGH<br>ENABLED IF SI PIN IS LOW | N/A               |

#### Table 1. eIMR States after Reset

#### **AUI Port**

The AUI Port is fully compatible with the IEEE 802.3, Section 7 requirement for an AUI port. It has the signals associated with an AUI port: DO, DI, and CI.

The AUI port has two modes of operation: normal and reverse. When configured for normal operation, the functionality is that of an AUI port on a MAC (CI is an input). When configured for reverse operation, the functionality is that of an AUI on a MAU (CI is an output). The mode of the AUI port is set during the trailing (rising) edge of the reset pulse, by the state of the AMODE pin. A LOW sets the AUI port to its normal mode (CI Input) and a HIGH sets the AUI port to its reversed (CI Output) mode.

The eIMR device can be connected directly to a MAC through the AUI port. This requires that the AUI port be configured for reverse operation. Refer to the *Systems Applications* section for more details.

### **TP Port Interface**

### Twisted Pair Transmitters

TXD is a differential twisted-pair driver. When properly terminated, TXD will meet the electrical requirements for 10BASE-T transmitters as specified in IEEE 802.3, Section 14.3.1.2.

The TXD signal is filtered on the chip to reduce harmonic content per IEEE 802.3, Section 14.3.2.1 (10BASE-T). Since filtering is performed in silicon, TXD can connect directly to a standard transformer, thereby, eliminating the need for external filtering modules. Proper termination is shown in the *Systems Applications* section.

#### **Twisted Pair Receivers**

RXD is a differential twisted-pair receiver. When properly terminated, RXD will meet the electrical requirements for 10BASE-T receivers as specified in IEEE 802.3, Section 14.3.1.3. The receivers do not require external filter modules. Proper termination is shown in the *Systems Applications* section.

The receiver's threshold voltage can be programmed to an extended-distance mode. In this mode, the differential receiver's threshold is reduced to allow a longer cable than the 100 meters specified in the IEEE 802.3 standard. For programming details, refer to the *Control Commands* section.

#### **Link Test**

The integrated TP ports implement the Link Test function, as specified in the IEEE 802.3 10BASE-T standard. The eIMR device will transmit Link Test pulses to any TP port after that port's transmitter has been inactive for more than 8 ms to 17 ms. Conversely, if a TP port does not receive any data packets or Link Test pulses for more than 65 ms to 132 ms and the Link Test function is enabled for that port, then that port will enter the link-fail state. The eIMR device will disable a port in link-fail state (i.e., disable repeater transmit and receive functions) until it receives either four consecutive Link Test pulses or a data packet.

The Link Test function can be disabled via the eIMR control port on a port-by-port basis, to allow the eIMR device to operate with pre-10BASE-T networks that do not implement the Link Test function. When the Link Test function is disabled, the eIMR device will not allow the TP port to enter link-fail state, even if no Link Test pulses or data packets are being received. Note, how-ever, that the eIMR device will always transmit Link Test pulses to all TP ports, regardless of whether or not the port is enabled, partitioned, in link-fail state, or has its Link Test function disabled. Separate control commands exist for enabling and disabling the transmission of Link Test pulses on a port-by-port basis.

#### **Polarity Reversal**

The TP ports can be programmed to receive data if a wiring error results in a data packet being received at a TP port with reversed polarity. This function will be enabled upon reception of a negative End Transmit Delimiter (ETD) or negative pulses and allows subsequent packets to be received with the correct polarity. The polarity-reversal function is executed once following reset or link-fail and can be programmed via the control port to be enabled or disabled on a port-by-port basis. The function may be enabled or disabled, following a reset, depending on the level of the SI signal on the rising edge of the RST pulse.

#### Visual Status Monitoring (LED) Support

The eIMR status port can be connected to LEDs to facilitate the visual monitoring of repeater port status. The status port has twelve output signals,  $LDA_{0-4}$ , and  $LDB_{0-4}$ , LDGA, and LDGB.  $LDA_{0-4}$  and  $LDB_{0-4}$  represent the four TP ports and AUI port. LDGA and LDGB are global indicators. Attributes that may be monitored are Carrier Sense (CRS), Collision (COL), Partition (PAR), Link Status (LINK), Loopback (LB), Port Disabled (DIS), and Jabber (JAB). Three control bits,  $LDC_{0-2}$ , select the particular attributes to be displayed on the LEDs. Table 2 shows how the programming combinations for  $LDC_{0-2}$  control the attributes that will be monitored.

Each LED drive pin (LDGA, LDGB, LDA<sub>0-4</sub>, and LDB<sub>0-4</sub>) has two states: Off and LOW. When none of the selected attributes are true, the driver is off and the diode is unlit. When an attribute is true, the driver is LOW, and the corresponding LEDs in Bank A or Bank B will be lit.

Some of the settings ( $LDC_2 = 1$ ) include a blink function. This allows two attributes to be selected for a given state on the pin. As an example when  $LDC_{0-2} = 110$ , the LDA outputs relating to TP ports will be solidly lit when there is a link established at that port. However, whenever there is activity on a port, the corresponding LDA pin will switch on (LOW) and off at a period of 130 ms. Note that a partition on that port will also cause the pin to go LOW.

On LDC settings that have two attributes for a state on a pin (blink or solid-on), the attribute causing the output to blink has priority. (Those attributes are shown in Table 2 with a blink period specified next to it.) If an attribute has no blink period specified, the LED indicates the attribute by being solidly lit.

The LEDs can also be controlled via the control port. The Enable Software Override commands turn the LEDs on regardless of the attributes selected for display through the LDC setting. Enable Software Override of Bank A LEDs causes the LDA<sub>0-4</sub> and LDGA pins to be driven LOW, and Enable Software Override of Bank B LEDs causes the LDB<sub>0-4</sub> and LDGB pins to be driven LOW. The blink rate is set by the Software Override LED Blink Rate command. The periods are off, 512 ms, 1560 ms, or solid on.

#### PRELIMINARY

| Table 2. | LED Attribute | -Monitoring | Program | Options |
|----------|---------------|-------------|---------|---------|
|----------|---------------|-------------|---------|---------|

| LI               | ED Cont          | rol              | Global LEDs TP LEDs AUI LEDs  |                |                    | LEDs               |                  |                  |
|------------------|------------------|------------------|-------------------------------|----------------|--------------------|--------------------|------------------|------------------|
| LDC <sub>2</sub> | LDC <sub>1</sub> | LDC <sub>0</sub> | LDGA                          | LDGB           | LDA <sub>1-4</sub> | LDB <sub>1-4</sub> | LDA <sub>0</sub> | LDB <sub>0</sub> |
| 0                | 0                | 0                | CRS                           | COL            | LINK (Note 2)      | PAR                | LB               | PAR              |
| 0                | 0                | 1                | CRS                           | COL            | LINK               | CRS                | LB               | CRS              |
| 0                | 1                | 0                |                               |                | Reserve            | d (Note 5)         |                  |                  |
| 0                | 1                | 1                |                               |                | Reserve            | d (Note 5)         |                  |                  |
| 1                | 0                | 0                |                               |                | LINK               | PAR                |                  | PAR              |
|                  |                  |                  | CRS 260-ms blk                | COL 260-ms blk | CRS 260-ms blk     | COL 260-ms blk     | CRS 260-ms blk   | COL 260-ms blk   |
| 1                | 0                | 1                | COL                           | JAB            | LINK (Note 3)      | PAR (Note 3)       | (Note 3)         | PAR (Note 3)     |
|                  |                  |                  | CRS 512-ms blk CRS 512-ms blk |                |                    |                    |                  |                  |
| 1                | 1                | 0                | CRS                           | COL            | LINK               | PAR or DIS         |                  | PAR or DIS       |
|                  |                  |                  |                               |                | CRS 130-ms blk     |                    | CRS 130-ms blk   |                  |
| 1                | 1                | 1                | CRS                           | COL            | LINK (Note 4)      | COL (Note 4)       | (Note 4)         | PAR (Note 4)     |
|                  |                  |                  |                               |                | PAR 1.56-s blk     |                    | PAR 1.56-s blk   |                  |

Notes:

1. CRS = Carrier Sense, COL = Collision, JAB = Jabber, LINK = Link, LB = Loop Back, PAR = Partition, DIS = Port Disabled, blk = Blink (Number = period of Blink).

2. For the  $LDC_{0-2}$  setting of 000: If the port is partitioned, the LINK LED is off.

- 3. All LEDs blink 16 times at 260 ms per blink after reset.
- 4. All LEDs are on for approximately 4 seconds after reset.
- 5.  $LDC_{0-2} = 010' \text{ and } 011' \text{ are undefined.}$

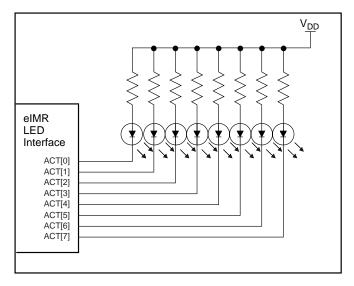
LED software override is executed in two stages, by first issuing the blink rate (Software Override of LED Blink Rate) and then issuing the command to enable the particular port LEDs (Enable Software Override of Bank A/B LEDs). All port combinations selected for software override control will reference the blink rate last issued by the Software Override of the LED Blink Rate command.

LDA<sub>0-4</sub>, LDB<sub>0-4</sub>, LDGA, and LDGB are open drain output drivers that sink 12 mA of current to turn on the LEDs. In a multiple eIMR configuration, the outputs from the global LED drivers (LDGA and LDGB) of each chip can be tied together to drive a single pair of global status LEDs.

CRS and COL are extended to make it easier for visual recognition; that is, they will remain active for some time even if the corresponding condition has expired. Once carrier sense is active, CRS will remain active for a minimum of 4 ms. Once a collision is detected, COL is active for at least 4 ms. The exception to this rule is for selection LDC<sub>0-2</sub> = 111. For this selection, COL is stretched to 100  $\mu$ s.

When  $LDC_{0-2} = 000$  or  $LDC_{0-2} = 001$ , the loopback attribute (LB) for the AUI port is displayed on  $LDA_0$ . LB is true when DO on the MAU is successfully looped back to DI on the AUI port. LB is false (off) if a loopback error is detected, or if the AUI port is disabled or in the reverse mode. Transmit carrier sense is sampled at the end of packet to determine the state of LB. The state of LB remains latched until carrier sense is sampled again for the next packet. The default/power-up state for LB is false (off).

Figure 1 shows the recommended connection of LEDs. When  $LDA_{0-4}$ ,  $LDB_{0-4}$ , LDGA, or LDGB are LOW, the LED lights.




20650B-6

Figure 1. Visual Monitoring Application—Direct LED Drive

#### Network Activity Display

The eIMR status port can drive up to eight LEDs to indicate the network-utilization level as a percentage of bandwidth. The status port uses eight dedicated outputs (ACT<sub>0-7</sub>) to drive a series of LEDs. The number of LEDs in the series that will be lit increases as the amount of network activity increases. ACT<sub>0</sub> represents the lowest level of activity; ACT<sub>7</sub> represents the highest. ACT<sub>0-7</sub> are open-drain outputs that typically sink 12 mA of current to turn on the LEDs. See Figure 2.



20650A-7



Table 3 shows  $ACT_{0-7}$  as a function of the percentage of network utilization. The table uses a scale that is more sensitive at low utilization levels. 100% utilization represents the maximum number of events that could occur in a given window of time.

The update rate and corresponding internal sampling window for ACT[7:0] is 250 ms. During this sampling window, a counter is used to count the number of times repeater transmit activity is TRUE. The counter uses a free-running clock which has the granularity to detect the minimum packet size of 96 bit times.

Figure 3 shows the timing relationship between the sampling window, counting clock, and transmit activity.



| Number of LEDs<br>Lit by ACT <sub>7-0</sub> | Percentage Utilization |
|---------------------------------------------|------------------------|
| 8                                           | >80%                   |
| 7                                           | >64%                   |
| 6                                           | >32%                   |
| 5                                           | >16%                   |
| 4                                           | >8%                    |
| 3                                           | >4%                    |
| 2                                           | >2%                    |
| 1                                           | >1%                    |

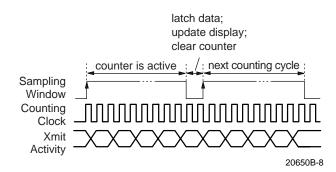



Figure 3. Activity Sampling

# **Expansion Bus Interface**

The eIMR device expansion bus allows multiple eIMR devices to be interconnected.

The expansion bus supports two modes of operation: internal arbitration mode and IMR+ mode. The internal arbitration mode uses a modified daisy-chain scheme to eliminate the need for any external arbitration circuitry. The IMR+ mode maintains the full functionality of the IMR+ (Am79C981) expansion bus and benefits from minimum delays. In this mode, the eIMR device requires external circuitry to handle arbitration for control of the bus.

The eIMR arbitration mode is determined at reset. This occurs on the trailing edge of  $\overline{\text{RST}}$  according to the state of  $\overline{\text{SELI}}_{0-1}$ , as illustrated in Figure 4.

#### **Internal Arbitration Mode**

The internal arbitration mode uses a daisy-chain (cascade) configuration.  $\overline{SELI}_{0-1}$  are arbitration inputs and  $\overline{SELO}$  is the arbitration output.  $\overline{SELO}$  goes LOW when there is activity on one or more of the elMR ports, or a  $\overline{SELI}$  input is LOW. The  $\overline{SEL}$  lines are connected as shown in Figure 5. This technique allows activity indication to propagate down the chain to the end device. All unused  $\overline{SELI}$  inputs must be tied to VDD.

 $\overline{\text{ACK}}$  and  $\overline{\text{COL}}$  are global activity I/O pins. When the eIMR device senses activity, it drives  $\overline{\text{ACK}}$  LOW.

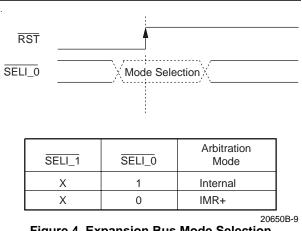



Figure 4. Expansion Bus Mode Selection

An eIMR device drives  $\overline{\text{COL}}$  LOW when it senses more than one device is active; that is, if the device has an active port AND a  $\overline{\text{SELI}}$  input is LOW, OR both  $\overline{\text{SELI}}$  inputs are LOW. In Boolean notation, the formula for  $\overline{\text{COL}}$ is:

$$\overline{\text{COL}} = (\text{Active port } \& (\overline{\text{SELI}}_1 + \overline{\text{SELI}}_0)) + (\overline{\text{SELI}}_1 \& \overline{\text{SELI}}_0)$$

where

& represents the Boolean AND operation + represents the Boolean OR operation  $\overline{\text{ACK}}$  and  $\overline{\text{COL}}$  are mutually exclusive. If an eIMR driving  $\overline{\text{ACK}}$  senses  $\overline{\text{COL}}$  LOW, the device will deassert  $\overline{\text{ACK}}$ .

DAT and JAM are synchronized to CLK. DAT is the repetition of data from any connected port (either TP or AUI port) encoded in NRZ format. JAM is an internal collision indicator. If JAM is HIGH, the active eIMR device has detected an internal collision across one or more of its ports. When this occurs, the DAT signal distinguishes between single-port collisions and multiport collisions. DAT = 1 indicates a single port collision; DAT = 0 indicates a multiport collision.

The drive capabilities of the I/O signals on the expansion bus (DAT, JAM,  $\overline{ACK}$ , and  $\overline{COL}$ ) are sufficient to allow seven eIMR devices to be connected together without the use of external transceivers or buffers.

The maximum number of eIMR devices that can be daisy chained is limited by the propagation delay of the eIMR devices. In practice, the depth of the cascade is limited to three eIMR devices, thus allowing a maximum of seven eIMR devices connected together via this expansion bus as shown in Figure 5.

The active device will not drive the data line, DAT, until one bit time (100 ns) after  $\overline{SELO}$  goes LOW. This is to avoid a situation where two devices drive DAT simultaneously.

### IMR+ Mode

In IMR+ mode, the expansion bus requires an external arbiter. The arbiter allows only one eIMR device to control the expansion bus. If more than one device attempts to take control, the arbiter terminates all access and signals a collision condition.

In IMR+ mode, DAT and JAM retain the same functionality as in internal arbitration mode, but ACK and COL are inputs to the eIMR device, driven by the external arbiter. The arbiter should drive ACK LOW when exactly one eIMR device is active. It should drive COL when more than one eIMR device is active. SELO is an output from the eIMR device. It indicates that the eIMR device has an active port and is requesting access to the bus.

When ACK is HIGH, DAT and JAM are in the highimpedance state. DAT and JAM go active when ACK goes LOW. Refer to the *Systems Applications* section (Figure 13) for the configuration of IMR+ mode of operation.

**Note:** The IMR+ mode is recommended when arbitrating between multiple boards.

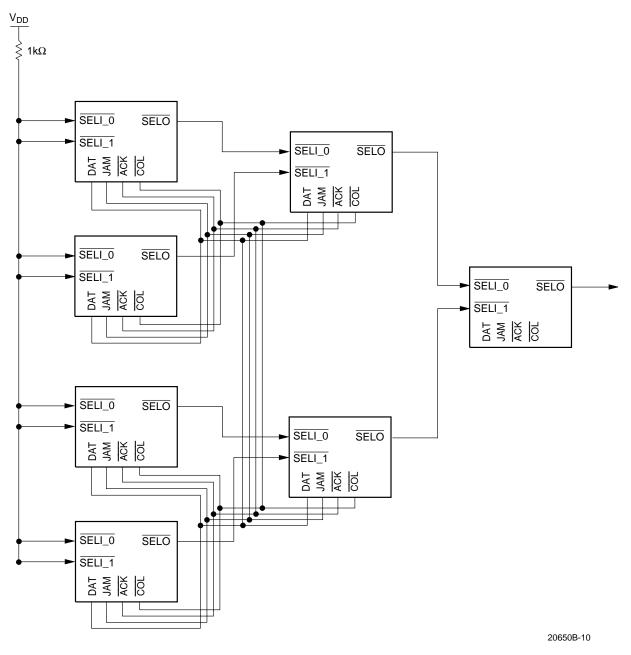
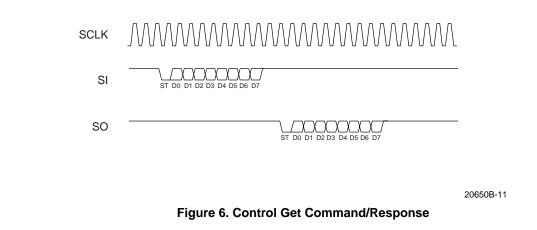



Figure 5. Internal Arbitration—eIMR Devices in Cascade

# **Control Functions**

The eIMR device receives control commands in the form of byte-length data on the serial input pin, SI. If the eIMR device is expected to provide data in response to the command, it will send byte-length data to the serial-output pin, SO. Both the input and output data streams are clocked with the rising edge of the SCLK signal. The byte-length data is in RS232 serial-data format; that is, one start bit followed by eight data bits. The externally generated clock at the SCLK pin may be either


a free-running clock synchronized to the input bit patterns, or a series of individual transitions meeting the setup-and-hold times with respect to the input bit pattern. If the latter method is used, 20 SCLK clock transitions are required for control commands that produce SO data, and 14 SCLK clock transitions are required for control commands that do not produce SO data.

Am79C984A

#### **Command/Response Timing**

Figure 6 shows the command/response timing. At the

end of a GET command, the elMR device waits two SCLK cycles and then transmits the response on SO.



#### **Control Commands**

The following section details the operation of each control commands available in the eIMR device. In all cases, the individual bits in each command are shown with the most-significant bit (bit 7) on the left and the least-significant bit (bit 0) on the right. Table 4 and Table 5 show a summary of default states and a summary of control commands, respectively.

**Note:** Data is transmitted and received on the serial data lines least-significant bit first and most-significant bit last.

#### Table 4. Summary of Default States after Reset

| eIMR Programmable Option—S              | Off                  |
|-----------------------------------------|----------------------|
| AUI Partitioning Algorithm              | Normal               |
| TP Partitioning Algorithm               | Normal               |
| AUI/TP Port                             | Enabled              |
| Link Test                               | Enabled              |
| Link Pulse                              | Enabled              |
| Automatic Receiver Polarity<br>Reversal | State of SI at reset |
| Extended Distance Mode                  | Disabled             |
| Blink Rate                              | Off                  |
| Software Override of LEDs               | Disabled             |

### Table 5. Control Port Command Summary

| Commands                                                                 | SI Data   | SO Data   |
|--------------------------------------------------------------------------|-----------|-----------|
| Set (Write Commands)                                                     |           |           |
| elMR Chip Programmable Options                                           | 0000 10S0 |           |
| Alternate AUI Partitioning Algorithm                                     | 0001 1111 |           |
| Alternate TP Partitioning Algorithm                                      | 0001 0000 |           |
| AUI Port Disable                                                         | 0010 1111 |           |
| AUI Port Enable                                                          | 0011 1111 |           |
| TP Port Disable                                                          | 0010 00## |           |
| TP Port Enable                                                           | 0011 00## |           |
| Disable Link Test Function (per TP port)                                 | 0100 00## |           |
| Enable Link Test Function (per TP port)                                  | 0101 00## |           |
| Disable Link Pulse (per TP port)                                         | 0100 10## |           |
| Enable Link Pulse (per TP port)                                          | 0101 10## |           |
| Disable Automatic Receiver Polarity Reversal<br>(per TP port)            | 0110 00## |           |
| Enable Automatic Receiver Polarity Reversal<br>(per TP port)             | 0111 00## |           |
| Disable Receiver Extended Distance Mode<br>(per TP port)                 | 0110 10## |           |
| Enable Receiver Extended Distance Mode<br>(per TP port)                  | 0111 10## |           |
| Disable Software Override of LEDs<br>(per Port - AUI & TP)               | 1001 #### |           |
| Enable Software Override of Bank A LEDs<br>(per Port - AUI & TP, Global) | 1011 #### |           |
| Enable Software Override of Bank B LEDs<br>(per Port - AUI & TP, Global) | 1100 #### |           |
| Software Override LED Blink Rate                                         | 1110 1### |           |
| Get (Read Commands)                                                      |           | I         |
| AUI Port Status (B, S, and L Cleared)                                    | 1000 1111 | PBSL 0000 |
| AUI Port Status (B Cleared)                                              | 1000 1101 | PBSL 0000 |
| AUI Port Status (S, L, Cleared)                                          | 1000 1011 | PBSL 0000 |
| AUI Port status (None Cleared)                                           | 1000 1001 | PBSL 0000 |
| TP Port Partitioning Status                                              | 1000 0000 | 0000 C3C0 |
| Bit Rate Error Status of TP Ports                                        | 1010 0000 | 0000 E3E0 |
| Link Test Status of TP Ports                                             | 1101 0000 | 0000 L3L0 |
| Receive Polarity Status of TP Ports                                      | 1110 0000 | 0000 P3P0 |
| MJLP Status                                                              | 1111 0000 | M000 0000 |
| Version                                                                  | 1111 1111 | 0000 0011 |

#### SET (Write Commands)

#### Chip Programmable Option

| SI Data | 0000 10S0 |
|---------|-----------|
| SO Data | None      |

The eIMR chip programmable option can be enabled (or disabled) by setting (or resetting) the S bit in the command string.

#### S AUI SQE Test Mask

Setting this bit allows the eIMR chip to ignore activity on the CI signal pair, during the SQE test window, following a transmission on the AUI port. Enabling this function does not prevent the reporting of this condition by the eIMR device. The two functions operate independently.

The SQE Test Window, as defined in IEEE 802.3 (Section 7.2.2.2.4) is from 6 bit times to 34 bit times (0.6  $\mu$ s to 3.4  $\mu$ s). This includes the delay introduced by a 50-meter AUI. CI activity that occurs outside this window is not ignored and is treated as a true collision.

#### Alternate AUI Partitioning Algorithm

| SI Data | 0001 1111 |
|---------|-----------|
| SO Data | None      |

Invoking this command sets the partition/reconnection scheme for the AUI port to the alternate (transmit-only) reconnection algorithm. To return the AUI port to the standard (transmit or receive) reconnection algorithm, it is necessary to reset the eIMR device. The standard partitioning algorithm is selected on reset.

#### Alternate TP Partitioning Algorithm

| SI Data | 0001 0000 |
|---------|-----------|
| SO Data | None      |

Invoking this command sets the partition/reconnection scheme for the TP ports to the alternate (transmit-only) reconnection algorithm. To return the TP ports to the standard (transmit or receive) reconnection algorithm, it is necessary to reset the eIMR device. The standard partitioning algorithm is selected on reset.

#### AUI Port Disable

| SI      | 0010 1111 |
|---------|-----------|
| SO Data | None      |

This command disables the AUI port. Subsequently, the eIMR chip will ignore all inputs to this port and will not transmit a DAT or JAM pattern on the AUI port. Disabling the AUI port also sets the partitioning state machine of the AUI port to the idle state. Therefore, a partitioned port can be reconnected by first disabling the AUI port and then enabling the AUI port.

#### AUI Port Enable

| SI      | 0011 1111 |
|---------|-----------|
| SO Data | None      |

This command enables the AUI port.

### <u>TP Port Disable</u>

| SI Data | 0010 00## |
|---------|-----------|
| SO Data | None      |

This command disables the TP port designated by the two least-significant bits of the command byte. Subsequently, the eIMR chip will ignore all inputs to the designated port and will not transmit a DAT or JAM pattern on that port. Disabling the TP port also sets the partitioning state machine of that port to the idle state. Therefore, a partitioned port can be reconnected by first disabling the port and then enabling it.

#### TP Port Enable

| SI Data | 0011 00## |
|---------|-----------|
| SO Data | None      |

This command enables the TP port designated by the two least-significant bits of the command byte.

#### Disable Link Test Function (Per TP port)

| SI Data | 0100 00## |
|---------|-----------|
| SO Data | None      |

This command disables the Link Test function of the TP port designated by the two least-significant bits of the command data. As a consequence of this, the port will no longer be disconnected if it fails the Link Test. If a port has the Link Test disabled, reading the Link Test Status indicates a 'Link Pass'.

#### Enable Link Test Function (Per TP port)

| SI Data | 0101 00## |
|---------|-----------|
| SO Data | None      |

This command enables the Link Test function of the TP port designated by the two least-significant bits of the command data. As a consequence of this, the port is disconnected if it fails the Link Test.

#### Disable Link Pulse (Per TP Port)

| SI Data | 0100 10## |
|---------|-----------|
| SO Data | None      |

This command disables the transmission of the Link pulse on the TP port designated by the two least-significant bits of the command byte.

#### Enable Link Pulse (Per TP Port)

| SI Data | 0101 10## |
|---------|-----------|
| SO Data | None      |

This command enables the transmission of the Link pulse on the TP port designated by the two leastsignificant bits of the command byte.

Disable Automatic Receiver Polarity Reversal (Per TP Port) SI Data 0110 00## SO Data None

This command disables the Automatic Receiver Polarity Reversal function for the TP port designated by the two least-significant bits in the command byte. If this function is disabled on a TP port receiving with reversed polarity (due to a wiring error), the TP port will fail the Link Test due to the incorrect polarity of the received Link pulses.

The state of Automatic Polarity Reversal function is set by SI on reset. If SI is HIGH at the rising edge of RST, the eIMR device disables Automatic Polarity Reversal. If SI is LOW at the rising edge of RST, the eIMR device enables Automatic Polarity Reversal.

Enable Automatic Receiver Polarity Reversal (Per TP Port)

| SI Data | 0111 00## |
|---------|-----------|
| SO Data | None      |

This command enables the Automatic Receiver Polarity Reversal function for the TP port designated by the two least-significant bits in the command byte. If enabled in a TP port, the eIMR chip will automatically invert the polarity of that port's receiver circuitry if the TP port is detected as having reversed polarity (due to wiring error). After reversing the receiver polarity, the TP port could then receive subsequent (reverse polarity) packets correctly.

Disable Receiver Extended Distance Mode (Per TP Port)

| SI Data | 0110 10## |
|---------|-----------|
| SO Data | None      |

This command disables the Receiver Extended Distance Mode and restores the RXD circuit of the transceiver to normal squelch levels for the TP port driver designated by the two least-significant bits of the command data.

Enable Receiver Extended Distance Mode (Per TP Port) 0111 10## SI Data SO Data None

This command modifies the RXD circuit of the transceiver for the TP port driver designated by the two leastsignificant bits of the command data. The RXD squelchthreshold value is lowered to accommodate signal attenuation associated with lines longer than 100 meters. At reset, Receiver Extended Distance Mode is disabled and the RXD circuit defaults to normal squelch-threshold values.

Disable Software Override of LEDs (Per Port - AUI and TP. Global)

| +       | <br>      |
|---------|-----------|
| SI Data | 1001 #### |
| SO Data | None      |

This command disables Software Override of the Port I FDs

Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command byte as follows:

| <u>####</u> | Port(s) affected |
|-------------|------------------|
| 0000-0011   | TP0 - TP3        |
| 0100-0111   | Reserved         |
| 1000        | AUI port         |
| 1001        | Reserved         |
| 1010        | Reserved         |
| 1011        | All TP ports     |
| 1100        | All ports        |
| 1101        | Global           |
| 1110        | Reserved         |
| 1111        | Reserved         |
|             |                  |

Following command execution, the attributes displayed on the LEDs will be determined by LDC<sub>0-2</sub>. Software Override of LEDs is disabled after reset.

Enable Software Override of Bank A LEDs (Per Port -AUI and TP, Global)

| SI Data | 1011 #### |
|---------|-----------|
| SO Data | None      |

This command forces the LEDs in Bank A to blink. Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command byte as follows:

| <u>####</u> | Port(s) affected |
|-------------|------------------|
| 0000-0011   | TP0 - TP3        |
| 0100-0111   | Reserved         |
| 1000        | AUI port         |
| 1001        | Reserved         |
| 1010        | Reserved         |
| 1011        | All TP ports     |
| 1100        | All ports        |
| 1101        | Global           |
| 1110        | Reserved         |
| 1111        | Reserved         |
|             |                  |

The designated LED driver(s) will switch between LOW and 'off' at the rate set by the Software Override Blink Rate command, Enable Software Override of Bank A LEDs references the blink rate last issued and overrides any other attribute specified by LDC<sub>0-2</sub>. Software Override of LEDs is disabled after reset.

Enable Software Override of Bank B LEDs (Per Port - AUI and TP. Global)

| SI Data | 1100 #### |
|---------|-----------|
| SO Data | None      |

This command forces the LEDs in Bank B to blink. Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command byte as follows:

| ####<br>0000-0011<br>0100-0111<br>1000<br>1001<br>1010<br>1011<br>1100 | AUI port<br>Reserved<br>All TP ports<br>All ports |
|------------------------------------------------------------------------|---------------------------------------------------|
|                                                                        | •                                                 |
| 1100<br>1101<br>1110                                                   | •                                                 |
| 1111                                                                   | Reserved                                          |

The designated LED driver(s) will switch between LOW and 'off' at the rate set by the Software Override of LED Blink Rate command. Enable Software Override of Bank B LEDs references the blink rate last issued and overrides any other attribute specified by  $LDC_{0-2}$ . Software Override of LEDs is disabled after reset.

Software Override of LED Blink Rate

| SI Data | 1110 1### |
|---------|-----------|
| SO Data | None      |

This command sets the blink period of the LEDs with Software Override enabled. The duty cycle is 50%. This command defaults to 'off' at reset.

| <u>Setting</u> | Blink Period |
|----------------|--------------|
| 1110 1000      | Off          |
| 1110 1001      | 512 ms       |
| 1110 1010      | 1560 ms      |
| 1110 1011      | Solid On     |

These settings apply to the blink rate for both Bank A and Bank B. This command must precede the Enable Software Override of Bank A/B LEDs command. All LED combinations selected for Software Override will reference the blink rate last issued.

## GET (Read Commands)

AUI Port(s) Status

| SI Data | 1000 1111 |
|---------|-----------|
| SO Data | PBSL 0000 |

The combined AUI status of the eIMR device allows a single instruction to be used to monitor the AUI port. The four local status bits are:

#### P Partitioning Status

This bit is '0' if the AUI port is partitioned and '1' if the AUI port is connected.

#### B Bit Rate Error

This bit is set to '1' if there is an instance of FIFO overflow or underflow. The bit is cleared when the eIMR device is read.

S SQE Test Status

This bit is set to '1' if the SQE test error is detected by the eIMR chip. The bit is cleared when the status is read.

L Loopback Error

The MAU attached to the AUI port is required to loopback data transmitted to DO onto the DI circuit. If the loopback carrier is not detected by the eIMR device, this bit is set to '1'. This bit is cleared when the status is read.

#### Alternate AUI Port(s) Status

There are three further variations of the AUI Port Status Command allowing selective clearing of a combination of B,S, and L bits. These are the following:

Alternate 1: B is not cleared, S and L are Cleared

| SI Data | 1000 1011 |
|---------|-----------|
| SO Data | PBSL 0000 |

Alternate 2: S and L are not cleared, B is Cleared

| SI Data | 1000 1101 |
|---------|-----------|
| SO Data | PBSL 0000 |

Alternate 3: None of S, B, and L are Cleared

| SI Data | 1000 1001 |
|---------|-----------|
| SO Data | PBSL 0000 |

TP Port Partitioning Status

| SI Data<br>SO Data |                                  | 1000 0000<br>0000 P3P0                   |
|--------------------|----------------------------------|------------------------------------------|
|                    | P <i>n</i> = 0<br>P <i>n</i> = 1 | TP Port Partitioned<br>TP port Connected |

where *n* is a port number in the range 0–3.

The response to this command gives the partitioning status of all four TP ports. If a port is disabled, reading its partitioning status will indicate that it is connected.

#### Bit Rate Error Status of TP Ports

| SI Data<br>SO Data          | 1010 0000<br>0000 E3E0  |
|-----------------------------|-------------------------|
| E <i>n</i> = 0              | No Error                |
| E <i>n</i> = 1              | FIFO Overflow           |
| where <i>n</i> is a port nu | umber in the range 0–3. |

The response to this command gives the bit-rate-overflow or underflow (data rate mismatch) condition of all the TP ports. A 1 indicates that the FIFO has overflowed or underflowed due to the amount of data received by the corresponding port. Link Test Status of TP ports

| SI Data<br>SO Data              | 1101 0000<br>0000 L3L0        |
|---------------------------------|-------------------------------|
| L <i>n</i> = 0                  | TP Port n in Link Test Failed |
| L <i>n</i> = 1                  | TP port n in Link Test Passed |
| where <i>n</i> is a port number | er in the range 0-3.          |

The response to this command gives the Link Test status of all the TP ports. A disabled port continues to report Link Test status. Re-enabling the port causes the port to be placed in the Link Test Fail state.

#### Receive Polarity Status of TP Ports

| SI Data<br>SO Data              | 1110 0000<br>0000 P3P0      |
|---------------------------------|-----------------------------|
| P <i>n</i> = 0                  | TP Port n Polarity Correct  |
| P <i>n</i> = 1                  | TP port n Polarity Reversed |
| where <i>n</i> is a port number | er in the range 0-3.        |

The response to this command gives the Received Polarity status of all the TP ports. If the polarity is detected as reversed for a TP port, then the eIMR device will set the appropriate bit in this command's result only if the Polarity Reversal Function is enabled for that port.

#### <u>MJLP Status</u>

| SI Data | 1111 0000 |
|---------|-----------|
| SO Data | M000 0000 |

Each eIMR device contains an independent MAU Jabber Lock Up Protection timer. The timer is designed to inhibit the transmit function of the eIMR device if it has been transmitting continuously for more than 65536 bit times. This bit remains set and is only cleared when the MJLP status is read using this command.

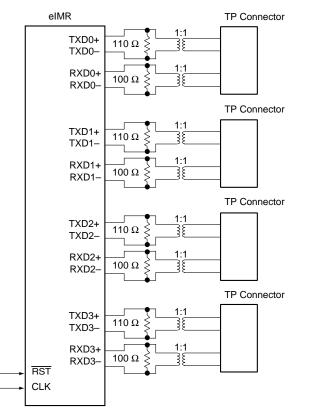
Version

| SI Data | 1111 1111 |
|---------|-----------|
| SO Data | 0000 0011 |

The response to this command gives the version of the eIMR device. 0011 was chosen to help distinguish the eIMR device from the IMR (Am79C980) and the IMR+ (Am79C981) devices.

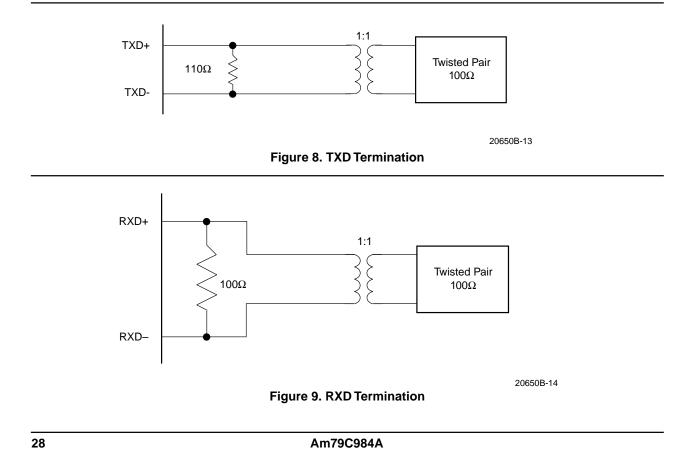
#### SYSTEMS APPLICATIONS

#### eIMR to TP Port Connection


The eIMR device provides a system solution to designing non-managed multiport repeaters. The eIMR device connects directly to AC coupling modules for a 10BASE-T hub. Figure 7 shows the simplified connection.

### **Twisted Pair Transmitters**

TXD signals need to be properly terminated to meet the electrical requirement for 10BASE-T transmitters. Proper termination is shown in Figure 8 which consists of a 110- $\Omega$  resistor and a 1:1 transformer. The load is a twisted-pair cable that meets IEEE 802.3, Section 14.4 specifications. The cable is terminated at the opposite end by 100  $\Omega$ .


### **Twisted Pair Receivers**

RXD signals need to be properly terminated to meet the electrical requirements for 10BASE-T receivers. Proper termination is shown in Figure 9. Note that the receivers do not require external filter modules.









# **MAC Interface**

The eIMR device can be connected directly to a MAC through the AUI port. This requires that the AUI port be configured in the reverse mode and connected as shown in Figure 10a. Notice that DI is connected to DO

of the MAC and DO is connected to DI of the MAC, because the reverse configuration only affects CI. Where CI is an input in the normal mode, in the reverse mode, CI is an output. Figure 10b shows the normal AUI configuration for reference.

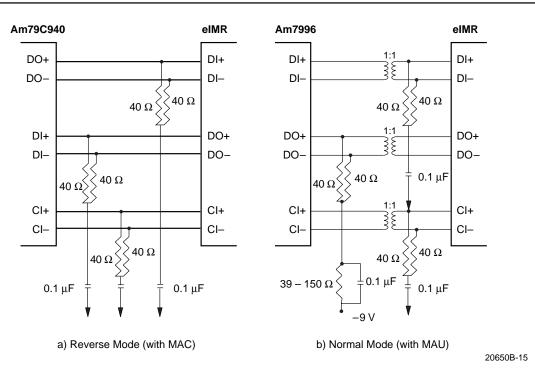



Figure 10. AUI Port Interconnections

# **Internal Arbitration Mode Connection**

The internal arbitration mode uses a modified daisychain scheme to eliminate the need for any external arbiter. In this mode,  $\overline{ACK}$  and  $\overline{COL}$  need to be pulled up through a minimum resistance of 1 k $\Omega$ . The DAT and JAM pins also need to be pulled down via a high value resistor. Refer to Figure 11.

# **IMR+ Mode External Arbitration**

The IMR+ mode maintains the full functionality of AMD's IMR+ (Am79C981) device's expansion bus. In this mode, the eIMR device requires external circuitry to handle arbitration for control of the bus. Figure 12 shows the configuration for the IMR+ mode of operation.

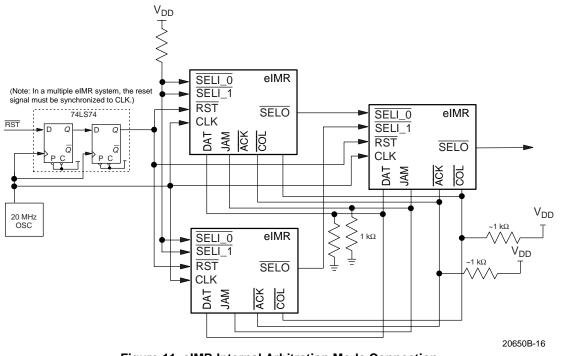



Figure 11. eIMR Internal Arbitration Mode Connection

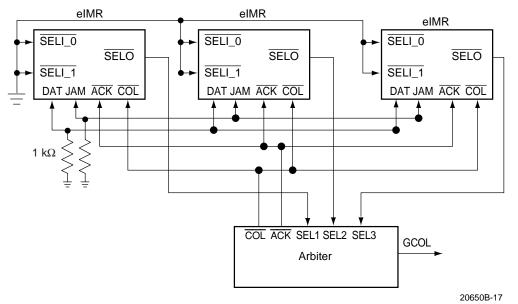
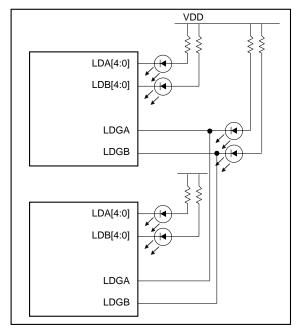




Figure 12. IMR+ Mode External Arbitration

# **Visual Status Display**

LDA/B[4:0] and LDGA/B provide visual status indicators for the eIMR. LDA/B[4:0] displays Link, Carrier Sense, Collision, and Partition information for the TP and AUI ports. LDGA/B display global Carrier Sense, Collision, and Jabber information.

In a multiple eIMR configuration, the global LED drivers (LDGA/B) from each chip can be tied together to drive a single pair of global status LEDs. The open drain output of these drivers facilitate this configuration. Refer to Figure 13.



20650B-18

Figure 13. Visual Status Display Connection

# 

### PRELIMINARY

# **ABSOLUTE MAXIMUM RATINGS**

Storage Temperature .....-65° C to +150° C

Ambient Temperature Under Bias . . . . 0° C to +70° C Supply Voltage referenced to

 $AV_{SS}$  or  $DV_{SS}$  ( $AV_{DD}$ ,  $DV_{DD}$ )....-0.3 V to +6.0 V

Stresses above those listed under ABSOLUTE MAXI-MUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect reliability. Programming conditions may differ.

### **OPERATING RANGES**

#### **Commercial (C) Devices**

Temperature (T\_A) . . . . . . . . . . . . 0° C to +70° C

Operating ranges define those limits between which the functionality of the device is guaranteed.

# DC CHARACTERISTICS over operating ranges unless otherwise specified

| Parameter<br>Symbol  | Parameter Description                                          | Test Conditions                                     | Min                   | Max                   | Unit |
|----------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------|-----------------------|------|
| Digital I/O          | Farameter Description                                          | Test conditions                                     | IVIIII                | IVIAX                 | Unit |
| V <sub>IL</sub>      | Input LOW Voltage                                              | V <sub>SS</sub> = 0.0 V                             | -0.5                  | 0.8                   | V    |
| V <sub>IH</sub>      | Input HIGH Voltage                                             | V <sub>SS</sub> = 0.0 V                             | 2.0                   | 0.5 + V <sub>DD</sub> | V    |
| V <sub>OL</sub>      | Output LOW Voltage                                             | I <sub>OL</sub> = 4.0 mA                            | _                     | 0.4                   | V    |
| V <sub>OH</sub>      | Output HIGH Voltage                                            | I <sub>OH</sub> = -0.4 mA                           | 2.4                   | _                     | V    |
| Ι <sub>ΙL</sub>      | Input Leakage Current                                          | V <sub>SS</sub> <v<sub>IN<v<sub>DD</v<sub></v<sub>  | -                     | 10                    | μA   |
| I <sub>ILSTR</sub>   | Input Leakage Current for STR pin                              | V <sub>SS</sub> <v<sub>IN<v<sub>DD</v<sub></v<sub>  | -                     | 50                    | μA   |
| V <sub>OLOD</sub>    | Open Drain Output LOW Voltage (LED pins)                       | I <sub>OLOD</sub> = 12 mA                           | -                     | 0.4                   | V    |
| AUI Ports            |                                                                |                                                     | 1                     |                       |      |
| I <sub>IAXD</sub>    | Input Current at DI± and CI± Pairs                             | $V_{SS} < V_{IN} < V_{DD}$                          | -500                  | 500                   | μΑ   |
| V <sub>AICM</sub>    | DI±, CI± Open Circuit Input Voltage Range                      | $I_{IN} = 0$                                        | V <sub>DD</sub> – 3.0 | V <sub>DD</sub> – 1.0 | V    |
| V <sub>AIDV</sub>    | Differential Mode Input Voltage Range<br>(DI, CI)              | V <sub>DD</sub> = 5.0 V                             | -2.5                  | +2.5                  | V    |
| V <sub>ASQ</sub>     | DI, CI Squelch Threshold                                       | -                                                   | -275                  | -160                  | mV   |
| V <sub>ATH</sub>     | DI Switching Threshold                                         | (Note 1)                                            | -35                   | +35                   | mV   |
| V <sub>AOD</sub>     | Differential Output Voltage  (DO+) - (DO)                      | R <sub>L</sub> = 78 Ω                               | 620                   | 1100                  | mV   |
| V <sub>AOC</sub>     | Differential Output Voltage  (CI+) – (CI–)  <br>(Reverse Mode) | R <sub>L</sub> = 78 Ω                               | 620                   | 1100                  | mV   |
| V <sub>AODI</sub>    | DO Differential Output Voltage Imbalance                       | $R_L = 78 \Omega$                                   | -25                   | +25                   | mV   |
| V <sub>AOD</sub> OFF | DO Differential Idle Output Voltage                            | R <sub>L</sub> = 78 Ω                               | -40                   | +40                   | mV   |
| I <sub>AOD</sub> OFF | DO Differential Idle Output Current                            | R <sub>L</sub> = 78 Ω (Note 1)                      | -1.0                  | +1.0                  | mA   |
| V <sub>AOCM</sub>    | DO+, DO- Common Mode Output Voltage                            | R <sub>L</sub> = 78 Ω                               | 2.5                   | V <sub>DD</sub>       | V    |
| Twisted Pa           | ir Ports                                                       |                                                     | 1                     | L                     |      |
| I <sub>IRXD</sub>    | Input Current at RXD±<br>and CI± Pairs                         | AV <sub>SS</sub> <v<sub>IN<v<sub>DD</v<sub></v<sub> | -500                  | 500                   | μΑ   |
| R <sub>RXD</sub>     | RXD Differential Input                                         | (Note 1)                                            | 10                    | _                     | kΩ   |
| V <sub>TIVB</sub>    | RXD+, RXD– Open Circuit<br>Input Voltage (bias)                |                                                     | V <sub>DD</sub> - 3.0 | V <sub>DD</sub> – 1.5 | V    |
| $V_{TID}$            | Differential Mode Input<br>Range (RXD)                         | V <sub>DD</sub> = 5.0 V                             | -3.1                  | +3.1                  | V    |

# **DC CHARACTERISTICS (continued)**

| Parameter          |                                                                   |                                                                                    |      |      |      |
|--------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|------|------|------|
| Symbol             | Parameter Description                                             | Test Conditions                                                                    | Min  | Max  | Unit |
| Twisted Pai        | ir Ports (Continued)                                              |                                                                                    |      |      |      |
| $V_{TSQ+}$         | RXD Positive Squelch Threshold<br>(peak)                          | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>300</td><td>520</td><td>mV</td></f<10>   | 300  | 520  | mV   |
| V <sub>TSQ-</sub>  | RXD Negative Squelch Threshold (peak)                             | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>-520</td><td>-300</td><td>mV</td></f<10> | -520 | -300 | mV   |
| $V_{THS+}$         | RXD Post-Squelch Positive<br>Threshold (peak)                     | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>150</td><td>293</td><td>mV</td></f<10>   | 150  | 293  | mV   |
| V <sub>THS-</sub>  | RXD Post-Squelch Negative<br>Threshold (peak)                     | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>-293</td><td>-150</td><td>mV</td></f<10> | -293 | -150 | mV   |
| V <sub>LTSQ+</sub> | RXD Positive Squelch Threshold<br>(peak) - Extended Distance Mode | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>180</td><td>365</td><td>mV</td></f<10>   | 180  | 365  | mV   |
| V <sub>LTSQ-</sub> | RXD Negative Squelch Threshold<br>(peak) - Extended Distance Mode | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>-365</td><td>-180</td><td>mV</td></f<10> | -365 | -180 | mV   |
| V <sub>LTHS+</sub> | RXD Post-Squelch Positive<br>Threshold - Extended Distance Mode   | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>90</td><td>175</td><td>mV</td></f<10>    | 90   | 175  | mV   |
| V <sub>LTHS-</sub> | RXD Post-Squelch Negative<br>Threshold - Extended Distance Mode   | Sinusoid<br>5 MHz <f<10 mhz<="" td=""><td>-175</td><td>-90</td><td>mV</td></f<10>  | -175 | -90  | mV   |
| V <sub>RXDTH</sub> | RXD Switching Threshold                                           | (Note 1)                                                                           | -60  | 60   | mV   |
|                    | ply Current                                                       |                                                                                    | ·    |      |      |
| I <sub>DD</sub>    | Power Supply Current<br>(Idle) (Note 2)                           | CLK = 20 MHz<br>V <sub>DD</sub> = +5.25V                                           | -    | 100  | mA   |
|                    | Power Supply Current<br>(Transmitting)                            | CLK = 20 MHz<br>V <sub>DD</sub> = +5.25V                                           | -    | 350  | mA   |

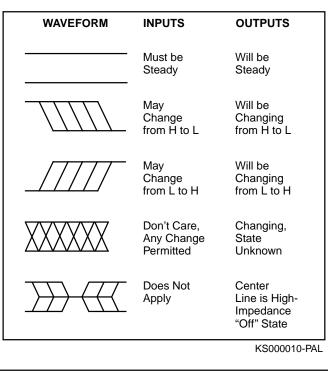
#### Notes:

1. Parameter not tested.

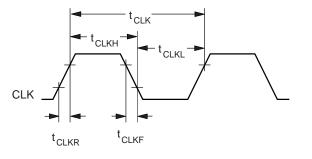
2. LED current not included. Maximum current rating on LED drivers is 12 mA.

# SWITCHING CHARACTERISTICS

| Parameter<br>Symbol | Parameter Description                                                                             | Test Conditions                                | Min    | Max    | Unit |
|---------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------|--------|--------|------|
| Clock and           | Reset Timing                                                                                      |                                                |        |        |      |
| t <sub>CLK</sub>    | CLK Clock Period                                                                                  |                                                | 49.995 | 50.005 | ns   |
| t <sub>CLKH</sub>   | CLK Clock High                                                                                    |                                                | 20     | 30     | ns   |
| t <sub>CLKL</sub>   | CLK Clock Low                                                                                     |                                                | 20     | 30     | ns   |
| t <sub>CLKR</sub>   | CLK Rise Time                                                                                     |                                                | -      | 10     | ns   |
| t <sub>CLKF</sub>   | CLK Fall Time                                                                                     |                                                | -      | 10     | ns   |
| t <sub>PRST</sub>   | Reset Pulse Width after Power On                                                                  |                                                | 150    | -      | μs   |
| t <sub>RST</sub>    | Reset Pulse Width                                                                                 |                                                | 4      | -      | μs   |
| t <sub>RSTSET</sub> | Reset HIGH Setup Time with respect to<br>CLK                                                      |                                                | 15     | -      | ns   |
| t <sub>RSTHLD</sub> | Reset LOW Hold Time                                                                               |                                                | 0      | -      | ns   |
| t <sub>XRS</sub>    | AMODE, $\overline{\text{SELI}}_0$ , and SI_D Setup Time to Rising Edge of $\overline{\text{RST}}$ |                                                | 0      | -      | ns   |
| t <sub>XRH</sub>    | AMODE, SELI <sub>0</sub> , and SI_D Hold Time from Rising Edge of RST                             |                                                | 400    | -      | ns   |
| AUI Port Ti         | ming                                                                                              |                                                | -      | I      |      |
| t <sub>DOTD</sub>   | CLK Rising Edge to DO Toggle                                                                      |                                                | -      | 30     | ns   |
| t <sub>DOTR</sub>   | DO+, DO- Rise Time (10% to 90%)                                                                   |                                                | _      | 7.0    | ns   |
| t <sub>DOTF</sub>   | DO+, DO- Fall Time (90% to 10%)                                                                   |                                                | _      | 7.0    | ns   |
| t <sub>DORM</sub>   | DO+, DO– Rise and Fall Time Mismatch                                                              |                                                | _      | 1.0    | ns   |
| t <sub>DOETD</sub>  | DO± End of Transmission                                                                           |                                                | 275    | 375    | ns   |
| t <sub>PWODI</sub>  | DI Pulse Width Accept/Reject Threshold                                                            | V <sub>IN</sub>  > V <sub>ASQ</sub>   (Note 2) | 15     | 45     | ns   |
| t <sub>PWKDI</sub>  | DI Pulse Width Not to Turn-off Internal<br>Carrier Sense                                          | V <sub>IN</sub>  > V <sub>ASQ</sub>   (Note 3) | 136    | 200    | ns   |
| t <sub>PWOCI</sub>  | CI Pulse Width Accept/Reject Threshold                                                            | V <sub>IN</sub>  > V <sub>ASQ</sub>   (Note 4) | 10     | 26     | ns   |
| t <sub>PWKCI</sub>  | CI Pulse Width Not to Turn-off Threshold                                                          | V <sub>IN</sub>  > V <sub>ASQ</sub>   (Note 5) | 75     | 160    | ns   |
| t <sub>CITR</sub>   | CI Rise Time (In Reverse Mode)                                                                    |                                                | -      | 7.0    | ns   |
| t <sub>CITF</sub>   | CI Fall Time (In Reverse Mode)                                                                    |                                                | -      | 7.0    | ns   |
| <sup>t</sup> CIRM   | CI+, CI– Rise and Fall Time Mismatch<br>(AUI in Reverse Mode)                                     |                                                | -      | 1.0    | ns   |
| Expansion           | Bus Timing                                                                                        |                                                |        | •      |      |
| t <sub>CLKHRL</sub> | CLK HIGH to SELO Driven LOW                                                                       | C <sub>L</sub> = 50 pF                         | 15     | 30     | ns   |
| t <sub>CLKHRH</sub> | CLK HIGH to SELO Driven HIGH                                                                      | C <sub>L</sub> = 50 pF                         | 15     | 30     | ns   |
| t <sub>CLKHDR</sub> | CLK HIGH to DAT/JAM Driven                                                                        | C <sub>L</sub> = 100 pF                        | 14     | 30     | ns   |
| t <sub>CLKHDZ</sub> | CLK HIGH to DAT/JAM Not Driven                                                                    | C <sub>L</sub> = 100 pF                        | 14     | 30     | ns   |
| t <sub>DJSET</sub>  | DAT/JAM Setup Time to CLK                                                                         |                                                | 10     | -      | ns   |
| t <sub>DJHOLD</sub> | DAT/JAM Hold Time from CLK                                                                        |                                                | 9      | -      | ns   |
| t <sub>CASET</sub>  | COL/ACK Setup Time to CLK                                                                         |                                                | 10     | _      | ns   |
| t <sub>CAHLD</sub>  | COL/ACK Hold Time from CLK                                                                        |                                                | 9      | -      | ns   |
| tSCLKHLD            | SI, SCLK Hold Time                                                                                |                                                | 50     | _      | ns   |


# SWITCHING CHARACTERISTICS (continued)

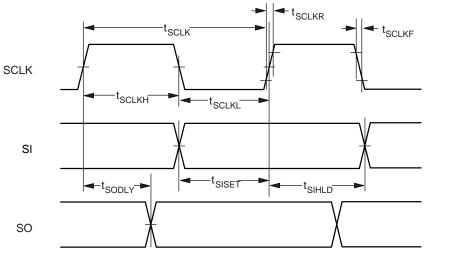
| Parameter<br>Symbol | Parameter Description                          | Test Conditions                                | Min | Мах | Unit |
|---------------------|------------------------------------------------|------------------------------------------------|-----|-----|------|
| Twisted Pai         | ir Port Timing                                 |                                                |     |     |      |
| t <sub>TXTD</sub>   | CLK Rising Edge to TXD± Transition Delay       |                                                | -   | 50  | ns   |
| t <sub>TETD</sub>   | Transmit End of Transmission                   |                                                | 250 | 375 | ns   |
| t <sub>PWKRD</sub>  | RXD Pulse Width Maintain/Turn-off<br>Threshold | V <sub>IN</sub>  > V <sub>THS</sub>   (Note 6) | 136 | 200 | ns   |
| t <sub>PERLP</sub>  | Idle Signal Period                             |                                                | 8   | 24  | ms   |
| t <sub>PWLP</sub>   | Idle Link Test Pulse Width                     |                                                | 75  | 120 | ns   |
| Control Por         | rt Timing                                      |                                                |     |     |      |
| t <sub>SCLK</sub>   | SCLK Clock Period                              |                                                | 100 | -   | ns   |
| t <sub>SCLKH</sub>  | SCLK Clock HIGH                                |                                                | 30  | -   | ns   |
| t <sub>SCLKL</sub>  | SCLK Clock LOW                                 |                                                | 30  | -   | ns   |
| t <sub>SCLKR</sub>  | SCLK Clock Rise Time                           |                                                | -   | 10  | ns   |
| t <sub>SCLKF</sub>  | SCLK Clock Fall Time                           |                                                | -   | 10  | ns   |
| t <sub>SISET</sub>  | SI Input Setup Time to SCLK Rising Edge        |                                                | 10  | -   | ns   |
| t <sub>SIHLD</sub>  | SI Input Hold Time from SCLK Rising Edge       |                                                | 10  | -   | ns   |
| t <sub>SODLY</sub>  | SO Output Delay from SCLK Rising Edge          | C <sub>L</sub> = 100 pF                        | -   | 40  | ns   |


#### Notes:

- 1. Parameter not tested.
- 2. DI pulses narrower than t<sub>PWODI</sub> (min) will be rejected; pulses wider than t<sub>PWODI</sub> (max) will turn internal DI carrier sense on.
- 3. DI pulses narrower than t<sub>PWKDI</sub> (min) will maintain internal DI carrier on; pulses wider than t<sub>PWKDI</sub> (max) will turn internal DI carrier sense off.
- 4. CI pulses narrower than t<sub>PWOCI</sub> (min) will be rejected; pulses wider than t<sub>PWOCI</sub> (max) will turn internal CI carrier sense on.
- 5. CI pulses narrower than t<sub>PWKCI</sub> (min) will maintain internal CI carrier on; pulses wider than t<sub>PWKCI</sub> (max) will turn internal CI carrier sense off.
- 6. RXD pulses narrower than t<sub>PWKRD</sub> (min) will maintain internal RXD carrier sense on; a pulse wider than t<sub>PWKRD</sub> (max) will turn RXD carrier sense off.

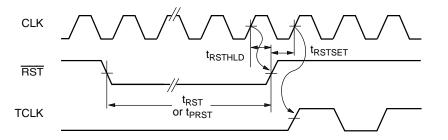
# **KEY TO SWITCHING WAVEFORMS**




# SWITCHING WAVEFORMS



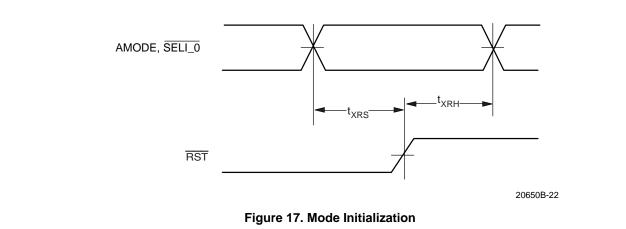
20650B-19




# SWITCHING WAVEFORMS (continued)

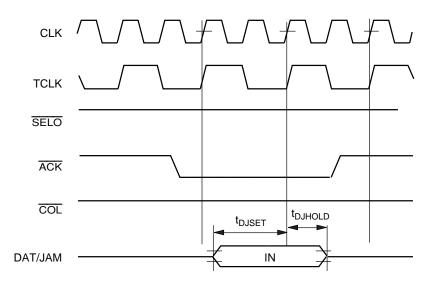


20650B-20





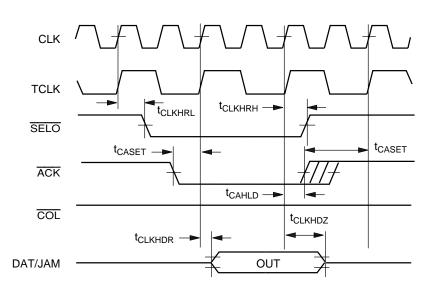

Note: TCLK represents internal eIMR timing


20650B-21





Am79C984A

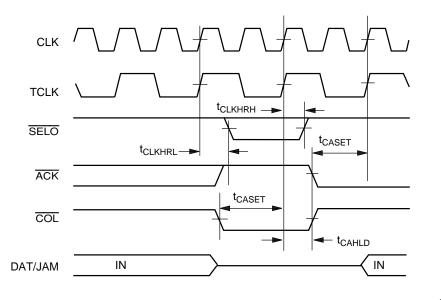

# SWITCHING WAVEFORMS (continued)



Note: TCLK represents internal eIMR timing

20650B-23

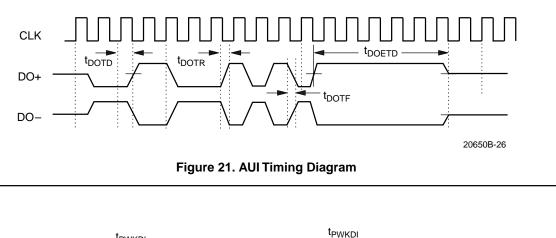
Figure 18. Expansion Bus Input Timing

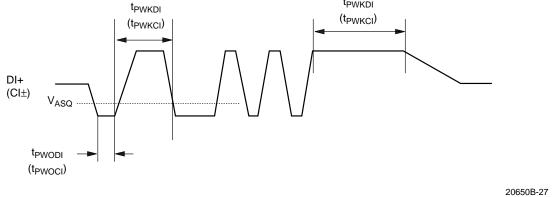



Note: TCLK represents internal eIMR timing

20650B-24

Figure 19. Expansion Bus Output Timing


# SWITCHING WAVEFORMS (continued)

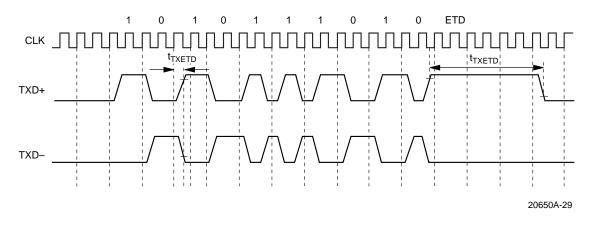



Note: TCLK represents internal eIMR timing

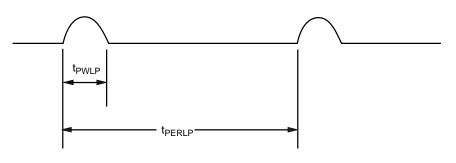
20650B-25

#### Figure 20. Expansion Bus Collision Timing

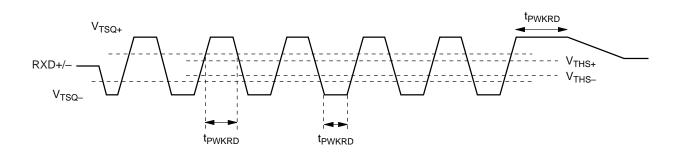


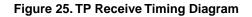






Am79C984A

# 


# SWITCHING WAVEFORMS (continued)














# SWITCHING TEST CIRCUIT

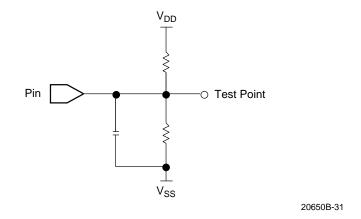
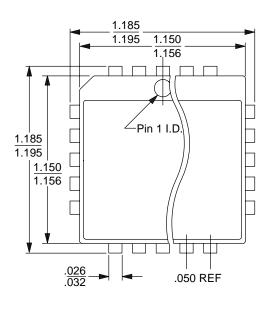
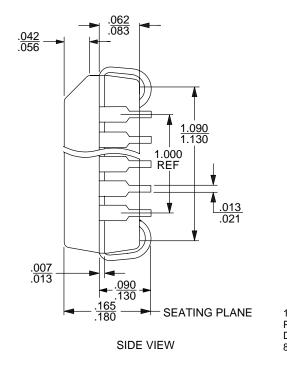
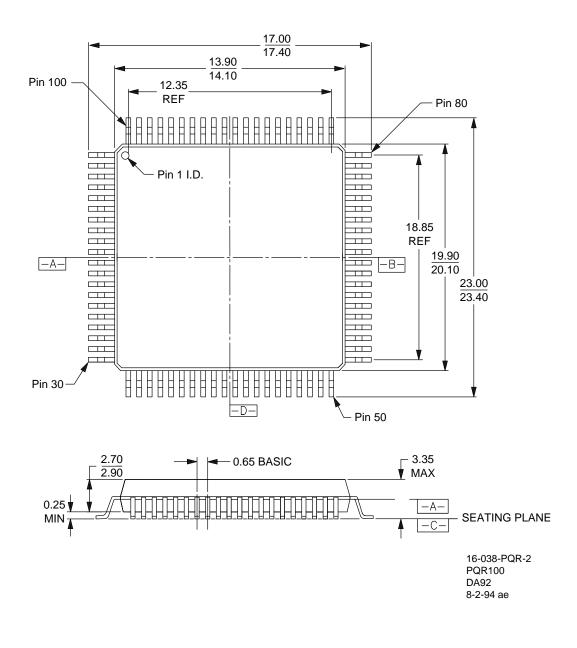




Figure 26. Switching Test Circuit


# PHYSICAL DIMENSIONS

### PL 084

# 84-Pin Plastic LCC (measured in inches)




TOP VIEW





# PHYSICAL DIMENSIONS PQR100 100-Pin Plastic Quad Flat Pack



#### Trademarks

Copyright © 1998 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Am186, Am386, Am486, Am29000, *b*IMR, eIMR, eIMR+, GigaPHY, HIMIB, ILACC, IMR, IMR+, IMR2, ISA-HUB, MACE, Magic Packet, PCnet, PCnet-*FAST*, PCnet-*FAST*+, PCnet-Mobile, QFEX, QFEXr, QuASI, QuEST, QuIET, TAXIchip, TPEX, and TPEX Plus are trademarks of Advanced Micro Devices, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.