INTERNATIONAL RECTIFIER

Data Sheet No. PD-9.443B

INTERNATIONAL RECTIFIER

I()R

REPETITIVE AVALANCHE AND dv/dt RATED*

HEXFET® TRANSISTORS

N-CHANNEL

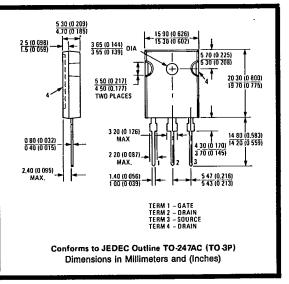
IRFP250 IRFP251 IRFP252 IRFP253

200 Volt, 0.085 Ohm HEXFET TO-247AC (TO-3P) Plastic Package

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.


Product Summary

Part Number	BVDSS	R _{DS(on)}	ID
IRFP250	200V	0.085Ω	33A
IRFP251	150V	0.085Ω	33A
IRFP252	200V	0.120Ω	27A
IRFP253	150V	0.120Ω	27A

Features:

- Isolated Central Mounting Hole
- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling

15.90 (0.626) MAX. 20.30 (0.800) MAX. 14.80 (0.583) MAX.

*This data sheet applies to product with batch codes that begin with a digit, ie. 2A3B

T-39-15

Absolute Maximum Ratings

	Parameter	IRFP250, IRFP251	IRFP252, IRFP253	Units
ID @ TC = 25°C	Continuous Drain Current	33	27	A
D @ TC = 100°C	Continuous Drain Current	21	17	A
рм	Pulsed Drain Current ®	130	110	Α
Pp @ Tc = 25°C	Max. Power Dissipation	1	80	W
	Linear Derating Factor	1	,4	W/K ®
V _{GS}	Gate-to-Source Voltage	±	٧	
EAS	Single Pulse Avalanche Energy @	8 (See F	m)	
IAR	Avalanche Current ^① (Repetitive or Non-Repetitive)	(See	A	
EAR	Repetitive Avalanche Energy ①	(See	mJ	
dv/dt	Peak Diode Recovery dv/dt ®	(See I	V/ns	
T _J TSTG	Operating Junction Storage Temperature Range	-55	o 150	°C
	Lead Temperature	300 (0.063 in. (1.6m	m) from case for 10s)	°C

Electrical Characteristics @ T_J = 25°C (Unless Otherwise Specified)

	Parameter	Туре	Min.	Тур.	Max.	Units	Test Co	nditions
BVDSS	Drain-to-Source Breakdown Voltage	IRFP250 IRFP252	200	_	_	v	V _{QS} ≈ 0V, I _D = 250µA	
		IRFP251 IRFP253	150					
R _{DS(on)}	Static Drain-to-Source On-State Resistance [⊕]	IRFP250 IRFP251		0.070	0.085	Ω	VGS = 10V, ID = 17A	
		IRFP252 IRFP253	_	0.085	0.12			
I _{D(on)} On-State	On-State Drain Current ®	IRFP250 IRFP251	33	_	_	A	V _{DS} > I _{D(on)} × R _{DS(on)} Max.	
		IRFP252 IRFP253	27				V _{GS} = 10V	
V _{GS(th)}	Gate Threshold Voltage	ALL	2.0	_	4.0	٧	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
9fs	Forward Transconductance @	ALL	13	19	_	S(U)	V _{DS} ≥ 50V, I _{DS} = 17A	
IDSS	Zero Gate Voltage Drain Current				250		VDS = Max, Rating, VGS =	0V
		ALL	1	-	1000	μA	V _{DS} = 0.8 × Max. Rating V _{GS} = 0V, T _J = 125°C	
¹ GSS	Gate-to-Source Leakage Forward	ALL	_	-	500	nA	VGS = 20V	
lass	Gate-to-Source Leakage Reverse	ALL		_	-500	nA	V _{GS} = -20V	
Q _g	Total Gate Charge	ALL	_	80	120	nC	VGS = 10V, ID = 30A	
Qgs	Gate-to-Source Charge	ALL	_	12	19	пС	V _{DS} = 0.8 × Max. Rating See Fig. 16	
Q _{gd}	Gate-to-Drain ("Miller") Charge		_	43	64	nC	(Independent of operating ten	nperature)
t _{d(on)}	Turn-On Delay Time	ALL		20	30	nŝ	V _{DD} = 100V, I _D ≈ 30A, R _G	= 6.2Ω
t _r	Rise Time	ALL	_	120	180	ns	$R_D = 3.3\Omega$	
td(off)	Turn-Off Delay Time	ALL	_	69	100	ns	See Fig. 15	
tf	Fall Time	ALL	_	80	120	ns	(Independent of operating ten	nperature)
LD	Internal Orain Inductance	ALL	-	4.5	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	Modified MOSFET symbol showing the internal inductances.
LS	Internal Source Inductance	ALL	-	7.5		Нn	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	
Ciss	Input Capacitance	ALL		2600	_	ρF	VGS = 0V, VDS = 25V	
Coss	Output Capacitance	ALL		650	_	ρF	f = 1.0 MHz	
		ALL		150		ρF	See Fig. 10	

11E D 🖥 4855452 0008752 6

INTERNATIONAL RECTIFIER

T-39-15

Source-Drain Diode Ratings and Characteristics

Parameter		Туре	Min.	Тур.	Max.	Units	Test Conditions		
Is	Continuous Source Current (Body Diode)	ALL	-	-	33	A	Modified MOSFET symbol showing the integral Reverse p-n junction rectifier.		
ISM	Pulsed Source Current (Body Diode) ①	ALL	-	-	130	A			
V _{SD}	Diode Forward Voltage	ALL	-	-	2.0	V	T _J = 25°C, I _S = 33A, V _{GS} = 0V		
trr	Reverse Recovery Time	ALL	140	300	630	ns	$T_J = 25^{\circ}C_{i}\cdot l_F = 30A_{i} \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		
QRR	Reverse Recovery Charge	ALL	1.8	3.8	8.1	μC			
ton	Forward Turn-On Time	ALL	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.						

Thermal Resistance

RthJC	Junction-to-Case	ALL	-		0.70	K/W®	
RthCS	Case-to-Sink	ALL	_	0.24		K/W®	Mounting surface flat, smooth, and greased
RthJA	Junction-to-Ambient	ALL	_	_	40	K/W®	Typical socket mount
	Mounting Torque	ALL	_	_	10	in. • lbs.	Standard 6-32 screw

Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 5) Refer to current HEXFET reliability report

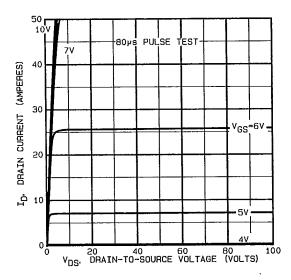
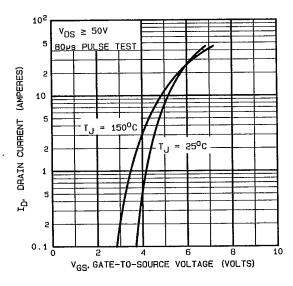
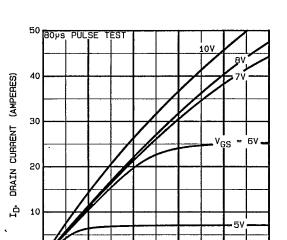


Fig. 1 — Typical Output Characteristics




Fig. 2 — Typical Transfer Characteristics

 $[\]begin{array}{l} \text{I}_{\text{SD}} \leq 33\text{A, di/dt} \leq 190 \text{ A/µs,} \\ \text{V}_{\text{DD}} \leq \text{BV}_{\text{DSS}}, \text{T}_{\text{J}} \leq 150^{\circ}\text{C} \\ \text{Suggested R}_{\text{G}} = 6.2\Omega \end{array}$

S K/W = °C/W W/K = W/°C

^{2 @} V_{DD} = 50V, Starting T_J = 25°C, L = 1.1mH, R_G = 25 Ω , Peak I_L = 33A

^{④ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%}

INTERNATIONAL RECTIFIER

Fig. 3 — Typical Saturation Characteristics

1.0 2.0 3.0 4.0 DRAIN-TO-SOURCE VOLTAGE (VOLTS)

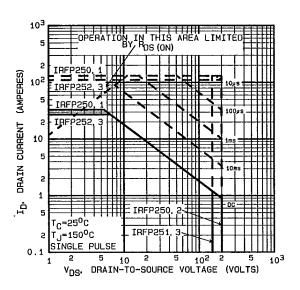


Fig. 4 — Maximum Safe Operating Area

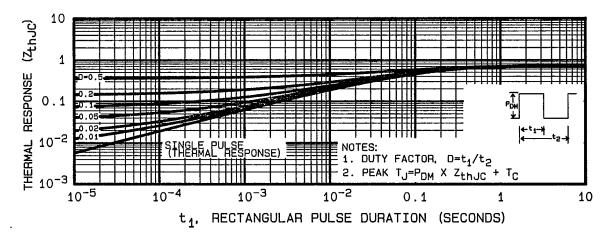


Fig. 5 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

11E D 4855452 0008754 0

INTERNATIONAL RECTIFIER

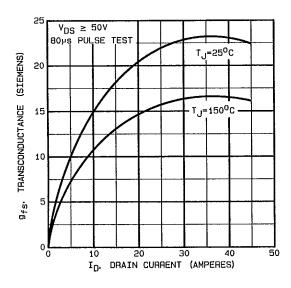


Fig. 6 — Typical Transconductance Vs. Drain Current

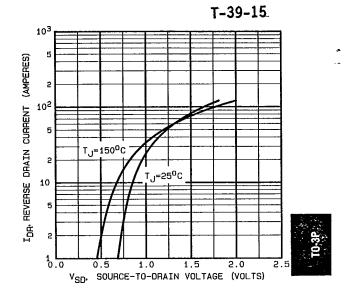


Fig. 7 — Typical Source-Drain Diode Forward Voltage

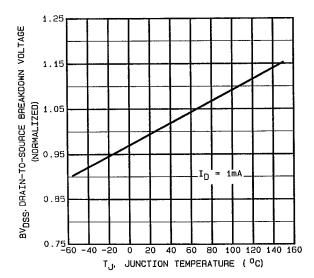


Fig. 8 — Breakdown Voltage Vs. Temperature

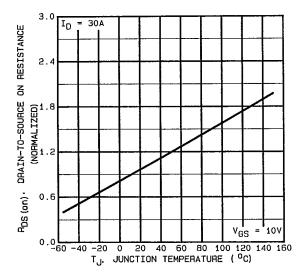
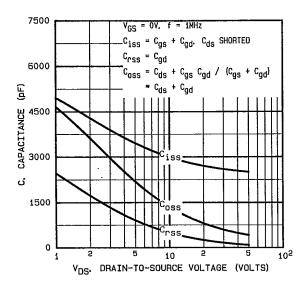



Fig. 9 — Normalized On-Resistance Vs. Temperature

INTERNATIONAL RECTIFIER

11E D 4855452 0008755 1

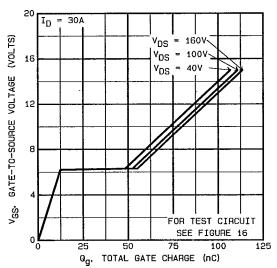
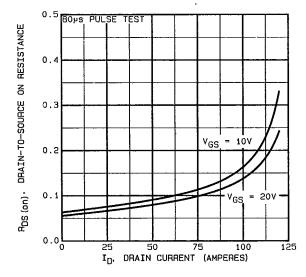



Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

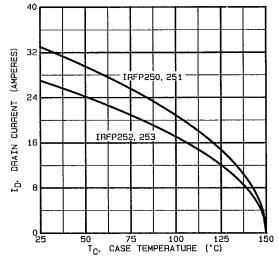


Fig. 12 — Typical On-Resistance Vs. Drain Current

Fig. 13 — Maximum Drain Current Vs. Case Temperature

JE D 4855452 0008756 3

INTERNATIONAL RECTIFIER T-39-15

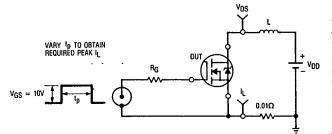


Fig. 14a - Unclamped Inductive Test Circuit

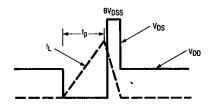


Fig. 14b — Unclamped Inductive Waveforms

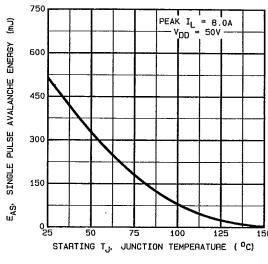


Fig. 14c — Maximum Avalanche Energy Vs. Starting Junction Temperature

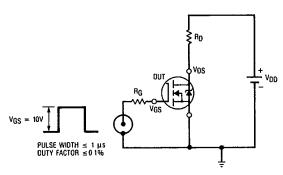


Fig. 15a — Switching Time Test Circuit

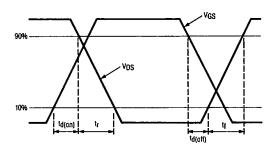


Fig. 15b — Switching Time Waveforms

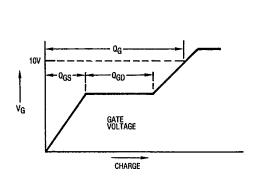


Fig. 16a - Basic Gate Charge Waveform

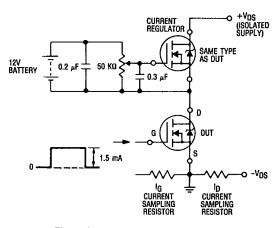


Fig. 16b — Gate Charge Test Circuit

INTERNATIONAL RECTIFIER

lle D 4855452 0008757 5 T-39-15

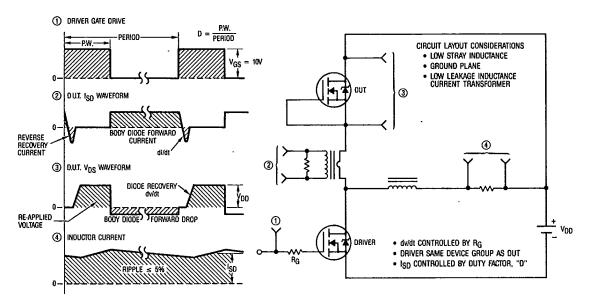


Fig. 17 — Peak Diode Recovery dv/dt Test Circuit