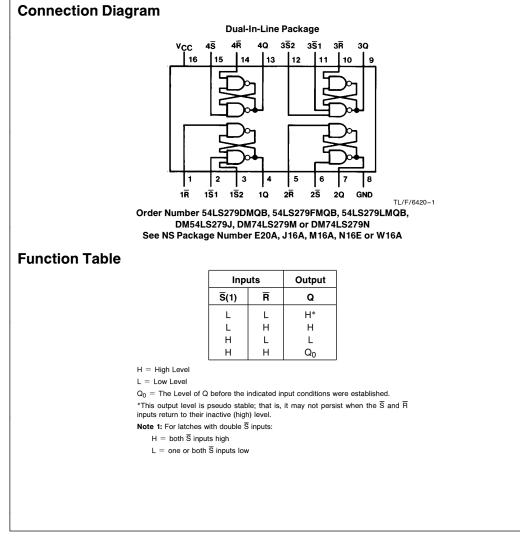


54LS279/DM54LS279/DM74LS279 Quad S-R Latches


General Description

The 'LS279 consists of four individual and independent Set-Reset Latches with active low inputs. Two of the four latches have an additonal \overline{S} input ANDed with the primary \overline{S} input. A low on any \overline{S} input while the \overline{R} input is high will be stored in the latch and appear on the corresponding Q output as a high. A low on the \overline{R} input while the \overline{S} input is high will clear the Q output to a low. Simultaneous transistion of the \overline{R} and \overline{S} inputs from low to high will cause the Q output

to be indeterminate. Both inputs are voltage level triggered and are not affected by transition time of the input data.

Features

 Alternate military/aerospace device (54LS279) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

©1995 National Semiconductor Corporation TL/F/6420

RRD-B30M105/Printed in U. S. A.

54LS279/DM54LS279/DM74LS279 Quad S-R Latches

May 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

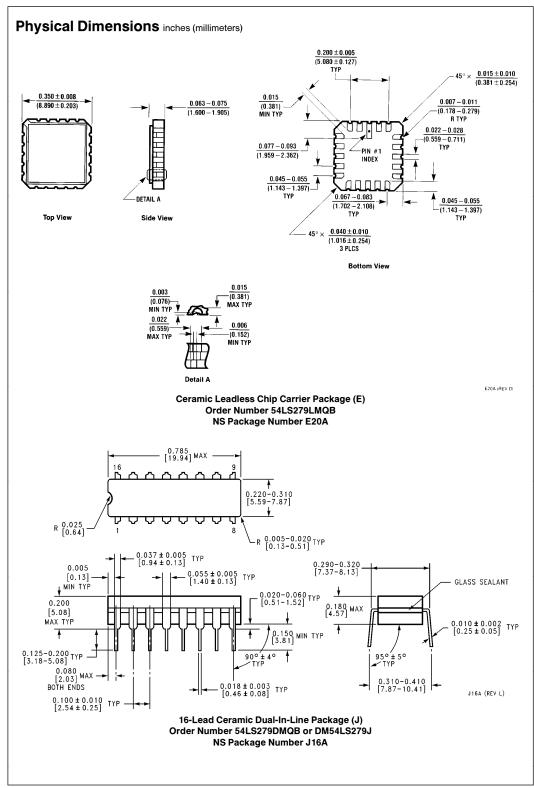
Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS and 54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

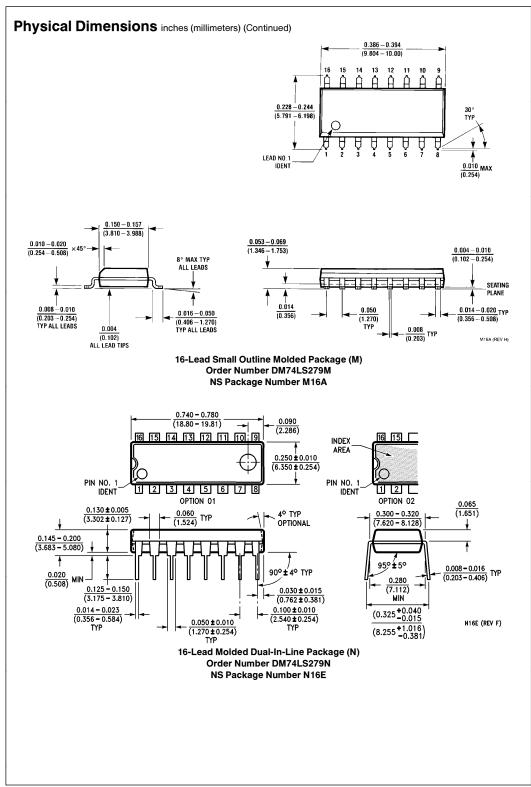
Recommended Operating Conditions

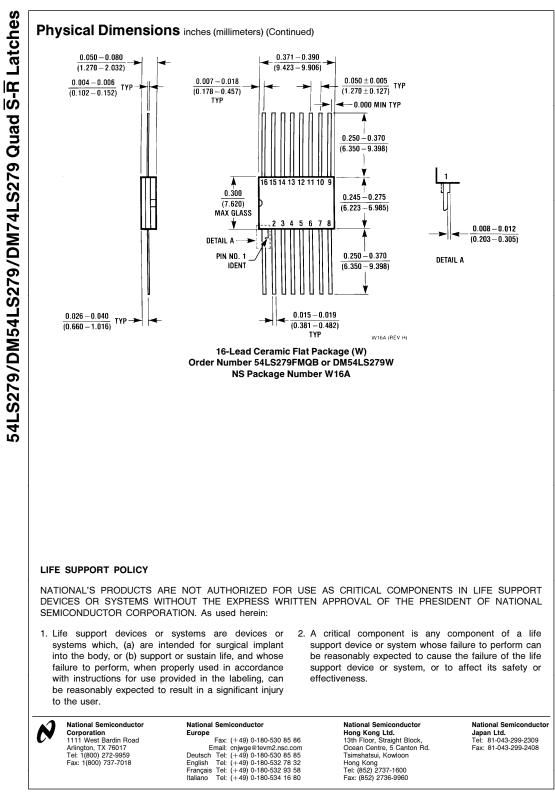
Symbol	Parameter	DM54LS279				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
Τ _Α	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)


			0	•	0 (,
Symbol	ool Parameter Conditions		Parameter Conditions M	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5	3.5		- v
		$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.5		
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	v
		$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_{I} = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 2)	DM74	-20		-100	
ICC	Supply Current	V _{CC} = Max (Note 3)			3.8	7	mA

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 3: I_{CC} is measured with all \overline{R} inputs grounded, all \overline{S} inputs at 4.5V and all outputs open.

	I Parameter	From (Input) To (Output)	$R_L = 2 k\Omega$					
Symbol			C _L =	15 pF	C _L = 50 pF		Units	
			Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time Low to High Level Output	∇ Q		22		25	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	∇ Q		15		23	ns	
^I PHL	Propagation Delay Time High to Low Level Output	R to Q		27		33	ns	

4

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications