May 2000

M78XX Series Voltage Regulators

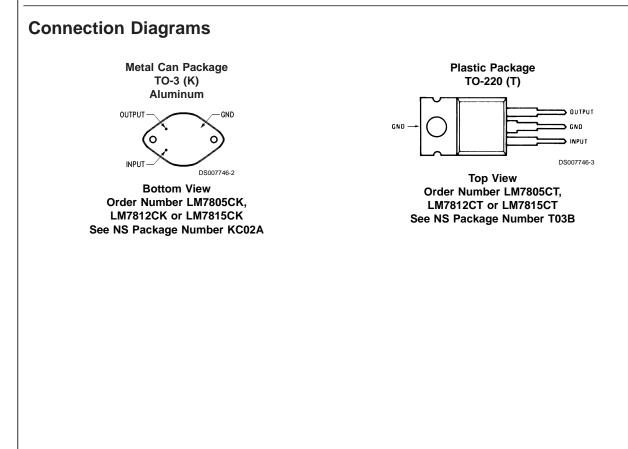
LM78XX Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

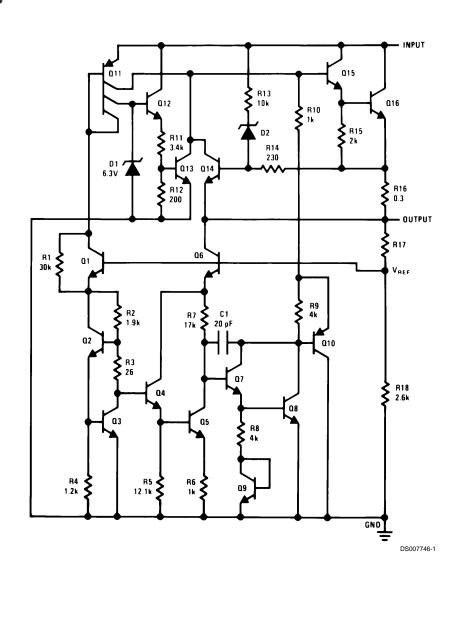
The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.


For output voltage other than 5V, 12V and 15V the LM117 series provides an output voltage range from 1.2V to 57V.

Features

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package


Voltage Range

LM7805C	5V
LM7812C	12V
LM7815C	15V

LM78XX

Schematic

www.national.com

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage

(V _O = 5V, 12V and 15V)	35V
Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range (T _A)	0°C to +70°C

150°C
150°C
–65°C to +150°C
300°C
230°C

Electrical Characteristics LM78XXC (Note 2)

 $0^{\circ}C \leq T_{J} \leq 125^{\circ}C$ unless otherwise noted.

	Outpu	ut Voltage		5V			12V						
	Input Voltage (un	less otherwise noted)			10V			19V			Units		
Symbol	Parameter	C	onditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Vo	Output Voltage	Tj = 25°C, 5	$mA \leq I_O \leq 1A$	4.8	5	5.2	11.5	12	12.5	14.4	15	15.6	V
		P _D ≤ 15W, 5	$i \text{ mA} \leq I_{O} \leq 1\text{ A}$	4.75		5.25	11.4		12.6	14.25		15.75	V
		V _{MIN} ≤ V _{IN} ≤	s V _{MAX}	(7.5	$\leq V_{IN}$	≤ 20)	(14.5 ≤ V _{IN} ≤			$(17.5 \le V_{IN} \le 20)$			V
								27)		30)			
ΔV_{O}	Line Regulation	l _O = 500 mA	Tj = 25°C		3	50		4	120		4	150	mV
			ΔV_{IN}	$(7 \le V_{IN} \le 25)$			$14.5 \le V_{\rm IN} \le 30)$			(17	V		
			$0^{\circ}C \le Tj \le +125^{\circ}C$			50			120			150	mV
			ΔV_{IN}	$(8 \le V_{IN} \le 20)$			$(15 \le V_{IN} \le 27)$			(18.5 ≤ V _{IN} ≤ 30)			V
		l _o ≤ 1A	Tj = 25°C			50			120			150	mV
			ΔV_{IN}	(7.5	$\leq V_{IN}$	≤ 20)	(14	.6 ≤ V 27)	′ _{IN} ≤	(17	′.7 ≤ \ 30)	/ _{IN} ≤	V
			0°C ≤ Tj ≤ +125°C			25			60			75	mV
			ΔV_{IN}	$(8 \le V_{IN} \le 12)$			$(16 \le V_{IN} \le 22)$			$(20 \le V_{IN} \le 26)$			V
ΔV_{O}	Load Regulation	Tj = 25°C	$5 \text{ mA} \le \text{I}_{O} \le 1.5\text{A}$		10	50		12	120		12	150	mV
			250 mA ≤ I _O ≤ 750 mA			25			60			75	mV
		$5 \text{ mA} \le I_O \le 1A, 0^\circ C \le Tj \le$ +125°C				50			120			150	mV
l _Q	Quiescent Current	I _O ≤ 1A	Tj = 25°C			8			8			8	mA
			$0^{\circ}C \le Tj \le +125^{\circ}C$			8.5			8.5			8.5	mA
ΔI_Q	Quiescent Current	$5 \text{ mA} \le I_O \le$	1A			0.5			0.5			0.5	mA
	Change	Change $Tj = 25^{\circ}C, I_O \le 1A$				1.0			1.0			1.0	mA
		V _{MIN} ≤ V _{IN} ≤	(7.5	$\leq V_{IN}$	≤ 20)	(14.8	$S \leq V_{IN}$	_J ≤ 27)	(17	′.9 ≤ \ 30)	/ _{IN} ≤	V	
		$I_{O} \leq 500 \text{ mA}, 0^{\circ}\text{C} \leq \text{Tj} \leq +125^{\circ}\text{C}$				1.0			1.0			1.0	mA
		V _{MIN} ≤ V _{IN} ≤	(7 ≤	≤ V _{IN} ≤	≦ 25)	(14.5	i ≤ V _{IN}	_J ≤ 30)	(17	′.5 ≤ \ 30)	/ _{IN} ≤	V	
V _N	Output Noise Voltage	T _A =25°C, 1	$0 \text{ Hz} \le f \le 100 \text{ kHz}$		40			75			90		μV
ΔV _{IN}	Ripple Rejection		$I_{O} \le 1A$, Tj = 25°C or	62	80		55	72		54	70		dB
		f = 120 Hz	l _O ≤ 500 mA 0°C ≤ Tj ≤ +125°C	62			55			54			dB
		V _{MIN} ≤ V _{IN} ≤	(8 ≤	≤ V _{IN} ≤	≦ 18)	(15 :	≤ V _{IN} :	≤ 25)	(18	8.5 ≤ \ 28.5)		V	
Ro	Dropout Voltage	Tj = 25°C, I _c	_{DUT} = 1A		2.0			2.0			2.0		V
	Output Resistance	f = 1 kHz			8			18			19		mΩ

3

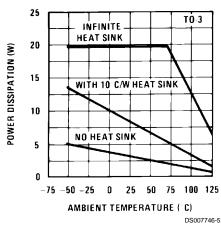
Electrical Characteristics LM78XXC (Note 2) (Continued)

 $0^{\circ}C \leq T_{J} \leq 125^{\circ}C$ unless otherwise noted.

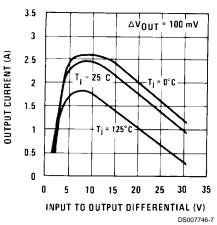
Output Voltage				5V			12V			15V			
	Input Voltage (un	put Voltage (unless otherwise noted)			10V			19V			23V		
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1	
	Short-Circuit Current	Tj = 25°C		2.1			1.5			1.2	•	A	
	Peak Output Current	Tj = 25°C		2.4			2.4		2.4			A	
	Average TC of V _{OUT}	$0^{\circ}C \le Tj \le +125^{\circ}C$, $I_{O} = 5 \text{ mA}$		0.6			1.5			1.8		mV/°C	
V _{IN}	Input Voltage Required to Maintain	$Tj = 25^{\circ}C, I_O \le 1A$	7.5		7.5 14.6			17.7			V		
	Line Regulation												

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically 4°C/W junction to case and 35°C/W case to ambient. Thermal resistance of the TO-220 package (T) is typically 4°C/W junction to case and 50°C/W case to ambient.

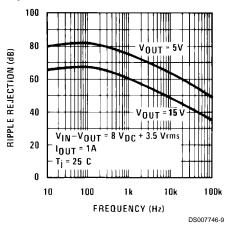
Note 2: All characteristics are measured with capacitor across the input of 0.22 μ F, and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w \leq 10 ms, duty cycle \leq 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

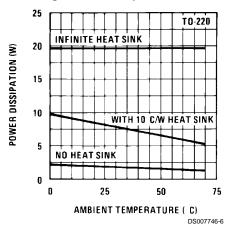

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and the test conditions, see Electrical Characteristics.

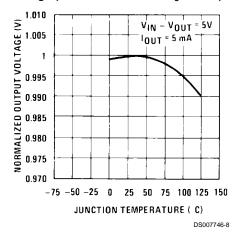
www.national.com

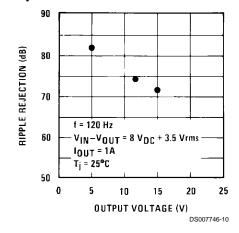

Typical Performance Characteristics

LM78XX

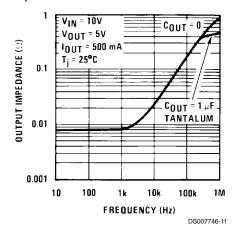




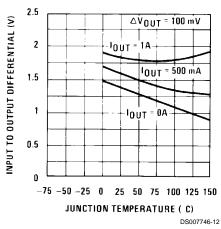



Maximum Average Power Dissipation

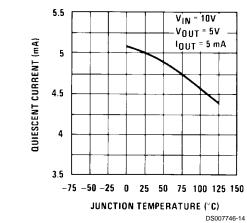
Output Voltage (Normalized to 1V at $T_J = 25^{\circ}C$)

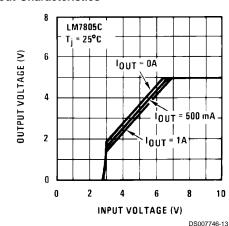


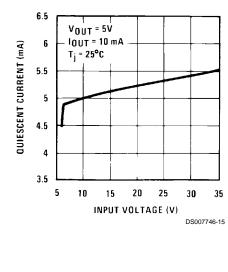
5

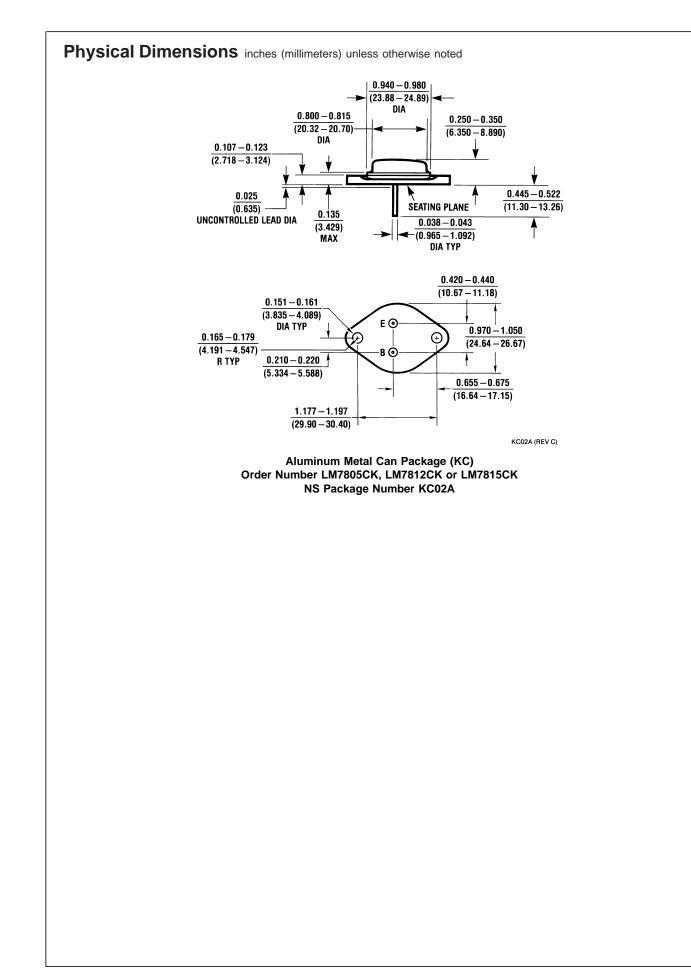


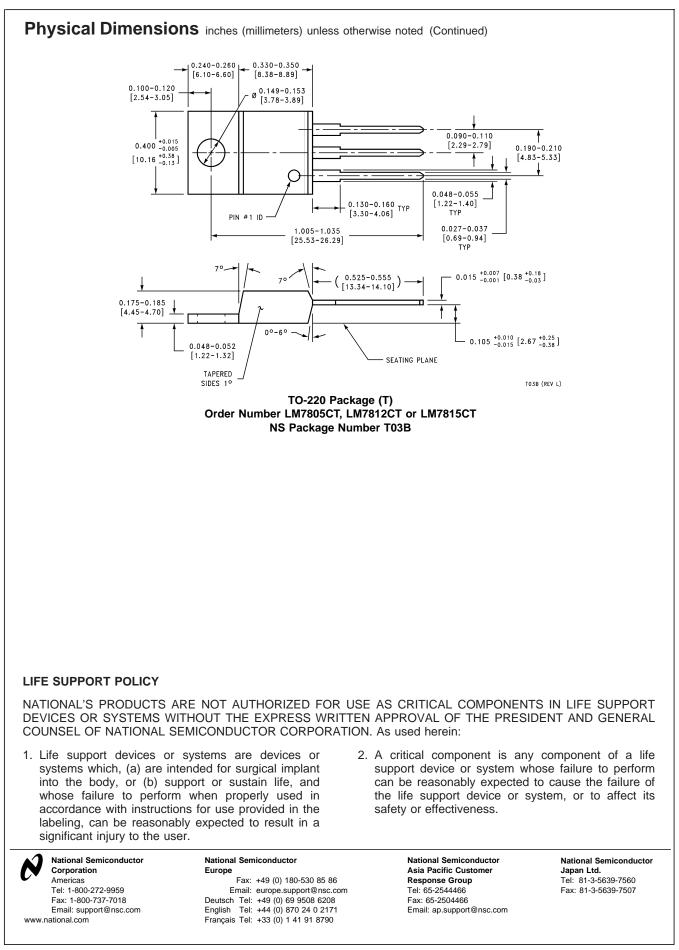
Typical Performance Characteristics (Continued)


Output Impedance


Dropout Voltage




Dropout Characteristics


Quiescent Current

www.national.com

LM78XX

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.