DUAL DECADE COUNTER; DUAL 4-STAGE BINARY COUNTER

The SN54/74LS390 and SN54/74LS393 each contain a pair of high-speed 4 -stage ripple counters. Each half of the LS390 is partitioned into a divide-by-two section and a divide-by five section, with a separate clock input for each section. The two sections can be connected to count in the 8.4.2.1 BCD code or they can count in a biquinary sequence to provide a square wave (50% duty cycle) at the final output.

Each half of the LS393 operates as a Modulo-16 binary divider, with the last three stages triggered in a ripple fashion. In both the LS390 and the LS393, the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state.

- Dual Versions of LS290 and LS293
- LS390 has Separate Clocks Allowing $\div 2, \div 2.5, \div 5$
- Individual Asynchronous Clear for Each Counter
- Typical Max Count Frequency of 50 MHz
- Input Clamp Diodes Minimize High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

> SN54/74LS390 SN54/74LS393

DUAL DECADE COUNTER;
DUAL 4-STAGE BINARY COUNTER

LOW POWER SCHOTTKY

FUNCTIONAL DESCRIPTION

Each half of the SN54/74LS393 operates in the Modulo 16 binary sequence, as indicated in the $\div 16$ Truth Table. The first flip-flop is triggered by HIGH-to-LOW transitions of the CP input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the Q outputs do not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flip-flops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a $\div 5$ section that is independent except for the common MR function. The $\div 5$
section operates in 4.2.1 binary sequence, as shown in the $\div 5$ Truth Table, with the third stage output exhibiting a 20% duty cycle when the input frequency is constant. To obtain $\mathrm{a} \div 10$ function having a 50% duty cycle output, connect the input signal to CP_{1} and connect the Q_{3} output to the CP_{0} input; the Q_{0} output provides the desired 50% duty cycle output. If the input frequency is connected to CP_{0} and the Q_{0} output is connected to CP_{1}, a decade divider operating in the 8.4.2.1 BCD code is obtained, as shown in the BCD Truth Table. Since the flip-flops change state asynchronously, logic signals derived from combinations of LS390 outputs are also subject to decoding spikes. A HIGH signal on MR forces all outputs LOW and prevents counting.

SN54/74LS390 LOGIC DIAGRAM (one half shown)

SN54/74LS393 LOGIC DIAGRAM (one half shown)

SN54/74LS390 BCD TRUTH TABLE (Input on $\mathrm{CP}_{\mathbf{0}} ; \mathrm{Q}_{\mathbf{0}} \mathrm{CP}_{1}$)				
	OUTPUTS			
COUNT	Q_{3}	Q_{2}	Q_{1}	Q_{0}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

SN54/74LS390 $\div 10(50 \%$ @ Q $)$ TRUTH TABLE (Input on $\mathrm{CP}_{1}, \mathrm{Q}_{3}$ to CP_{0})

COUNT	OUTPUTS			
	$\mathrm{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathrm{Q}_{\mathbf{1}}$	$\mathrm{Q}_{\mathbf{0}}$
0	L	L	L	L
1	L	L	H	L
2	L	H	L	L
3	L	H	H	L
4	H	L	L	L
5	L	L	L	H
6	L	L	H	H
7	L	H	L	H
8	L	H	H	H
9	H	L	L	H

SN54/74LS393 TRUTH TABLE

cOUNT	OUTPUTS			
	Q $_{\mathbf{3}}$	Q $_{\mathbf{2}}$	Q $_{\mathbf{1}}$	Q $_{\mathbf{0}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

H = HIGH Voltage Level L = LOW Voltage Level

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54	4.5	5.0	5.5	$\mathrm{~V}^{\prime}$
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	$-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{2}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		
		74	2.7	3.5		V			
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{OL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { MIN, } \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{OL}=8.0 \mathrm{~mA}$		
${ }^{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current	MR			-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		
		$\mathrm{CP}, \mathrm{CP}_{0}$			-1.6	mA			
		CP_{1}			-2.4	mA			
los	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=$ MAX		
ICC	Power Supply Current				26	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter		Limits			Unit	Test Conditions
			Min	Typ	Max		
${ }_{\text {f }}$ MAX	Maximum Clock Fre CP_{0} to Q_{0}		25	35		MHz	$C_{L}=15 \mathrm{pF}$
${ }_{\text {f MAX }}$	Maximum Clock Frequency$\mathrm{CP}_{1} \text { to } \mathrm{Q}_{1}$		20			MHz	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P$ to Q_{0}	LS393		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	CP_{0} to Q_{0}	LS390		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	$C P$ to Q_{3}	LS393		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	CP_{0} to Q_{2}	LS390		$\begin{aligned} & 37 \\ & 39 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	CP_{1} to Q_{1}	LS390		$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	
tPLH tPHL	CP_{1} to Q_{2}	LS390		$\begin{aligned} & 24 \\ & 26 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	CP_{1} to Q_{3}	LS390		$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	
tPHL	MR to Any Output	LS390/393		24	39	ns	

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter		Limits			Unit	Test Conditions
			Min	Typ	Max		
tw	Clock Pulse Width	LS393	20			ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tw	$\overline{C P}_{0}$ Pulse Width	LS390	20			ns	
tw	CP_{1} Pulse Width	LS390	40			ns	
tw	MR Pulse Width	LS390/393	20			ns	
trec	Recovery Time	LS390/393	25			ns	

AC WAVEFORMS

Figure 1

Figure 2
*The number of Clock Pulses required between tPHL and tPLH measurements can be determined from the appropriate Truth Table.

