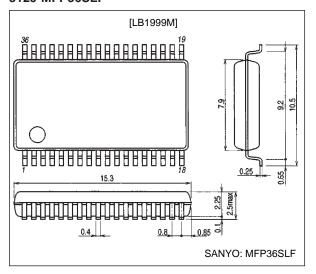


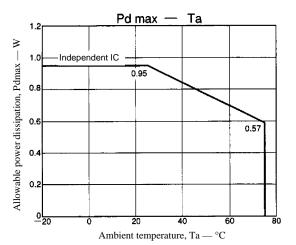
LB1999M

Three-Phase Brushless Motor Driver for VCR Capstan Motors

Overview

The LB1999M is a 3-phase brushless motor driver that is particularly appropriate for VCR capstan motor drivers.


Functions


- · 3-phase full-wave drive
- · Built-in torque ripple correction circuit (fixed correction ratio)
- · Built-in current limiter circuit and control characteristics that include gain switching
- Upper and lower side output stage over-saturation prevention circuit that does not require external capacitors.
- · FG amplifier with built-in Schmitt comparator
- · Thermal shutdown circuit

Package Dimensions

unit: mm

3129-MFP36SLF

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained berein

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

$\label{eq:Specifications} \textbf{Specifications} \\ \textbf{Absolute Maximum Ratings at } \mathbf{Ta} = 25^{\circ}\mathbf{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Mandanasa	V _{CC} max		7	V
Maximum supply voltage	V _S max		24	V
Maximum output current	I _O max		1.3	А
Allowable power dissipation	Pd max	Independent device	0.95	W
Operating temperature	Topr		-20 to + 75	°C
Storage temperature	Tstg		-55 to + 150	°C

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Cumplicustings	Vs		5 to 22	V
Supply voltage	V _{CC}		4.5 to 5.5	V
Hall input amplitude	V _{HALL}	Between the Hall inputs	±30 to ±80	mVo-p
GSENSE pin input range	V _{GSENSE}	With respect to the control system ground	-0.20 to + 0.20	V

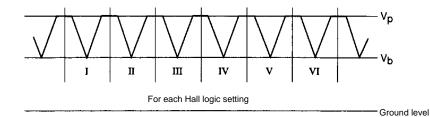
Electrical Characteristics at Ta = 25°C, V_{CC} = 5 V, V_{S} = 15 V

Dovementor	Symbol	Conditions	Ratings			Unit
Parameter		Conditions	min	typ max		Unit
VCC supply current	Icc	RL = ∞, V _{CTL} = 0 V (Quiescent)		12	18	mA
[Outputs]						
Output paturation valte as	V _O sat1	I_O = 500 mA, Rf = 0.5 Ω , Sink + Source V_{CTL} = V_{LIM} = 5 V (With saturation prevention)		2.1	2.6	V
Output saturation voltage	V _O sat2	I_O = 1.0 A, Rf = 0.5 Ω, Sink + Source V_{CTL} = V_{LIM} = 5 V (With saturation prevention)		2.6	3.5	V
Output leakage current	l _O leak				1.0	mA
[FR]						
FR pin input threshold voltage	V _{FSR}		2.25	2.50	2.75	V
FR pin input bias current	I _B (FSR)		-5.0			μΑ
[Control]						
CTLREF pin voltage	V _{CREF}		2.37	2.50	2.63	V
CTLREF pin input range	V _{CREFIN}		1.7		3.50	V
CTL pin input bias current	I _B (CTL)	With V _{CTL} = 5 V and the CTLREF pin open			8.0	μА
CTL pin control start voltage	V _{CTL} (ST)	With Rf = 0.5 Ω , V _{LIM} = 5 V, I _O \geq 10 mA, Hall input logic fixed (U, V, W = H, H, L)	2.20	2.35	2.50	V
CTL pin control switching voltage	V _{CTL} (ST2)	With Rf = 0.5Ω , $V_{LIM} = 5 V$	3.00	3.15	3.30	V
CTL pin control Gm1	Gm (CTL)	With Rf = 0.5 Ω , ΔI_O = 200 mA, Hall input logic fixed (U, V, W = H, H, L)	0.52	0.65	0.78	A/V
CTL pin control Gm2	Gm2 (CTL)	With Rf = 0.5Ω , $\Delta V_{CTL} = 200 \text{ mV}$, Hall input logic fixed (U, V, W = H, H, L)	1.20	1.50	1.80	A/V
[Current Limiter]						
LIM current limit offset voltage	Voff (LIM)	With Rf = 0.5 Ω , V _{CTL} = 5 V, I _O \geq 10 mA, Hall input logic fixed (U, V, W = H, H, L)	140	200	260	mV
LIM pin input bias current	I _B (LIM)	With $V_{CTL} = 5 \text{ V}$ and the V_{CREF} pin open, $V_{LIM} = 0 \text{ V}$	-2.5			μΑ
LIM pin current control level	I _{LIM}	With Rf = 0.5Ω , $V_{CTL} = 5 V$, $V_{LIM} = 2.06 V$, Hall input logic fixed (U, V, W = H, H, L)	830	900	970	mA
[Hall Amplifier]						
Hall amplifier input offset voltage	Voff (HALL)		-6		+6	mV
Hall amplifier input bias current	I _B (HALL)			1.0	3.0	μΑ
Hall amplifier common-mode input voltage range	V _{CM} (HALL)		1.3		3.3	V
Torque ripple correction ratio	TRC	For the high and low peaks in the Rf waveform when I $_{O}$ = 200 mA. (Rf = 0.5 Ω)*1		9		%
[FG Amplifier]		<u> </u>				
FG amplifier input offset voltage	Voff (FG)		-8		+8	mV
FG amplifier input bias current	I _B (FG)		-100			nA
FG amplifier output saturation voltage	V _O sat (FG)	Sink side, for the load provided by the internal pull-up resistor		0.5	0.6	V
FG bias voltage	V _{FGBI}		2.4	2.5	2.6	V

Notes: 1. The torque ripple correction ratio is determined as follows from the Rf voltage waveform.

2. Parameters that are indicated as design target values in the conditions column are not tested.

Continued on next page.


LB1999M

Continued from preceding page.

Parameter	Cumbal	Conditions	Ratings			Llait	
Parameter	Symbol Conditions		min	typ	max	Unit	
[Saturation]							
Saturation prevention circuit lower side voltage setting	V _O sat (DET)	The voltages between each OUT and Rf pair when I $_{\rm O}$ = 10 mA, Rf = 0.5 Ω , and V $_{\rm CTL}$ = V $_{\rm LIM}$ = 5 V	0.175	0.25	0.325	V	
[Schmitt Amplifier]	[Schmitt Amplifier]						
Duty ratio	DUTY	Under the specified conditions ($R_F = 39 \text{ k}\Omega$)	48.7	50	51.3	%	
Upper side output saturation voltage	Vsatu (SH)	$I_{O} = -20 \mu\text{A}$	4.8			V	
Lower side output saturation voltage	Vsatd (SH)	I _O = 100 μA			0.2	V	
Hysteresis width Vhys			32	46	60	mV	
TSD operating temperature T-TSD		Design target value*2		170		°C	

Notes: 1. The torque ripple correction ratio is determined as follows from the Rf voltage waveform.

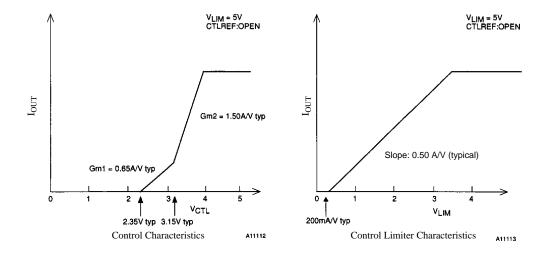
2. Parameters that are indicated as design target values in the conditions column are not tested.

$$Correction \ ratio = \ \frac{2 \times (V_p - V_b)}{V_p - V_b} \ 100 \times (\%)$$

A11111

Truth Table and Control Functions

	Source → Sink	Hall input			FR	
	Source → Sirik	U	V	W	FK	
1	$\text{Phase V} \to \text{Phase W}$	Н	Н	-	Н	
'	$\text{Phase W} \to \text{Phase V}$	11		L	L	
2	$\text{Phase U} \to \text{Phase W}$	Н	L	1	Н	
	$\text{Phase W} \to \text{Phase U}$	П		L	L	
3	$\text{Phase U} \to \text{Phase V}$	Н	1	н	Н	
3	$Phase \ V \rightarrow Phase \ U$			П	L	
Phase W → Phase V			L	н	Н	
4	$\text{Phase V} \to \text{Phase W}$	-	-		L	
5	$Phase\;W\toPhase\;U$		н	Н	Н	
5	$Phase\:U\toPhase\:W$	-			L	
6	$Phase\;V\toPhase\;U$		Н		Н	
Ö	$Phase\:U\toPhase\:V$	L	П	L	L	


Note: Since the drive technique adopted is a 180° technique, phases other than the sink and source phase do not turn off.

Note: In the FR column, "H" refers to a voltage of 2.75 V or higher, and "L" refers

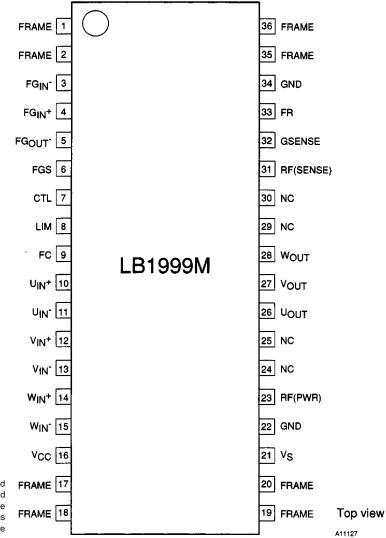
to 2.25 V or lower (when $V_{CC} = 5$ V.)

Note: In the Hall input column, "H" refers to the state in the corresponding phase where the + input is at a potential at least 0.01 V higher than the – input, and "L" refers to the state where the - input is at a potential at least 0.01 V higher than the + input.

Control Function and Current Limiter Function

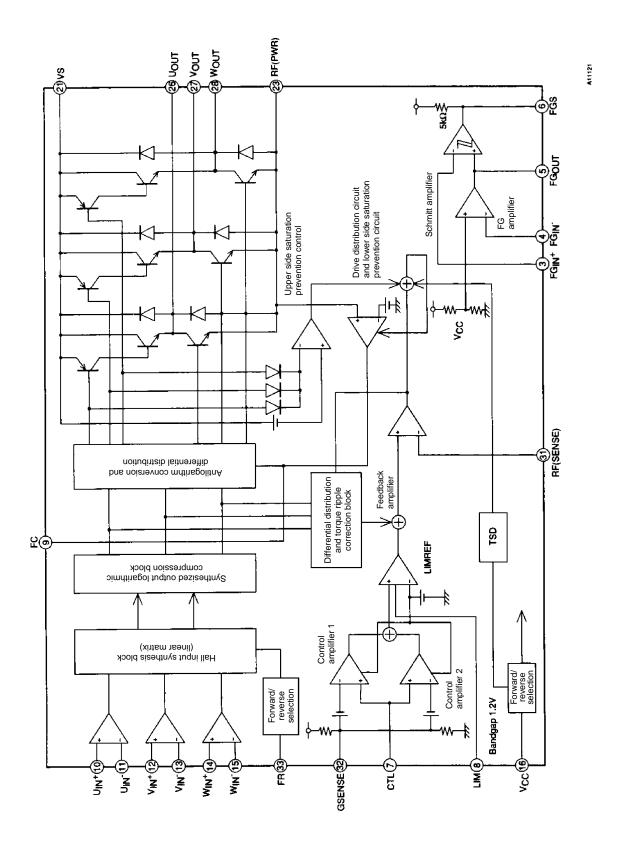
Pin Descriptions

Pin No.	Pin	Function	Equivalent circuit
FIII NO.	rin	FUNCTION	Equivalent circuit
3	FG _{IN} +	Input used when the FG amplifier is used as an inverting input. A feedback resistor must be connected between FG _{OUT} and this pin.	V _{CC} A 5µA
4	FG _{IN} ⁻	Noninverting input used when the FG amplifier is used as a differential input amplifier. No bias is applied internally.	FG _{in} (+) 3 000Ω FG _{in} (+) 300Ω A11117
5	FG _{OUT}	FG amplifier output. There is an internal resistive load.	V _{cc}
6	FGS	Control reference voltage. While this pin is set to about $0.43 \times V_{CC}$ internally, this voltage can be modified by applying a voltage from a low-impedance circuit. (The input impedance is about $4.3~\mathrm{k}\Omega$).	10kΩ
9	FC	Speed control loop frequency characteristics correction.	## ## FC ## A11118
7	CTL	Speed control input. The control implemented is fixed current drive controlled by current feedback from Rf. $Gm = 0.58/V \text{ (typical) when Rf} = 0.5 \ \Omega.$	CTL
8	LIM	Current limiter function control. The output current can be varied linearly by applying a voltage to this pin. The slope is 0.5 A/V (typical) when Rf = 0.5 Ω .	100μA
10 11	U _{IN} + U _{IN} -	U phase Hall element inputs. Logic high is defined as states where IN ⁺ > IN ⁻ .	(12,14) (13,15)
12 13	V _{IN} + V _{IN} -	V phase Hall element inputs. Logic high is defined as states where IN ⁺ > IN ⁻ .	100μA 777
14 15	W _{IN} + W _{IN} -	W phase Hall element inputs. Logic high is defined as states where IN ⁺ > IN ⁻ .	A11114
16	V _{CC}	Power supply for all internal blocks other than the output block. This voltage must be stabilized so that noise and ripple do not enter the IC.	

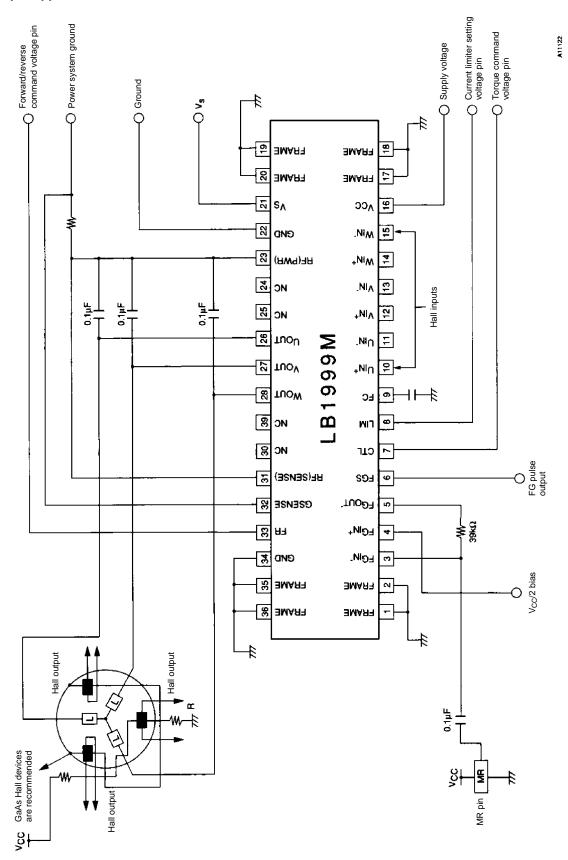

Continued on next page.

LB1999M

Continued from preceeding page.


Pin No.	Pin	Function	Equivalent circuit
21	Vs	Output block power supply	
23 31	Rf (PWR) Rf (SNS)	Output current detection. The control block current limiter operates using the resistor Rf connected between these pins and ground. Also, the lower side saturation prevention circuit and the torque ripple correction circuit operate based on the voltages to this pin. It is especially important to note that, since the saturation prevention level is set using this voltage, the lower side saturation prevention circuit will become less effective in the large current region if the value of Rf is lowered excessively. Also, the PWR and SENSE pins must be connected together.	150μA Lower side saturation prevention circuit input block 30kΩ 200Ω 10μA 200Ω
26 27 28	U _{OUT} V _{OUT} W _{OUT}	U phase output V phase output W phase output W phase output	Rf (SENSE)
32	GSENSE	Ground sensing. The influence of the common ground impedance on Rf can be excluded by connecting this pin to nearest ground for the Rf resistor side of the motor ground wiring that includes Rf. (This pin must not be left open.)	
33	FR	Forward/reverse selection. The voltage applied to this pin selects the motor direction (forward or reverse). $(Vth = 2.5 \ V \ at \ V_{CC} = 5 \ V \ (typical))$	

Pin Assignment



Note: Although the FRAME pins and the GND pins are not connected internally, the potentials of the GND pins and the FRAME pins externally be identical to assure ground potential stability.

Block Diagram

Sample Application Circuit

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1998. Specifications and information herein are subject to change without notice.