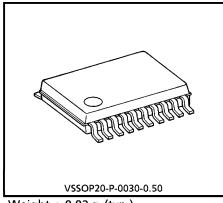
TOSHIBA TC7MZ374FK


TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T C 7 M Z 3 7 4 F K

LOW VOLTAGE OCTAL D-TYPE FLIP-FLOP WITH 5 V TOLERANT INPUTS AND OUTPUTS

The TC7MZ374 is a high performance CMOS OCTAL D-TYPE FLIP FLOP. Designed for use in 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) V_{CC} applications, but it could be used to interface to 5V supply environment for both inputs and outputs. This 8 bit D-type flip-flop is controlled by a clock input (CK) and a output enable input (\overline{OE}) . When the \overline{OE} input is high, the eight outputs are in a high impedance state. All inputs are equipped with protection circuits against static discharge.

Weight: 0.03 g (typ.)

Features

Low voltage operation : V_{CC} = 2.0~3.6 V

High speed operation : $t_{pd} = 8.5 \text{ ns (max)}$

 $(V_{CC} = 3.0 \sim 3.6 \text{ V})$

Output current $|I_{OH}|/I_{OL} = 24 \text{ mA (min)}$

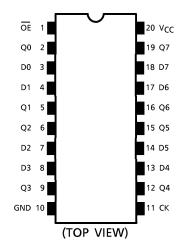
 $(V_{CC} = 3.0 \text{ V})$

 Latch-up performance ± 500 mA

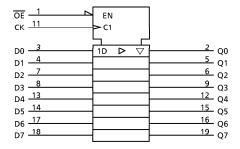
Available in VSSOP (US20)

- Power down protection is provided on all inputs and outputs.
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 374 type.

The information contained herein is subject to change without notice.


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

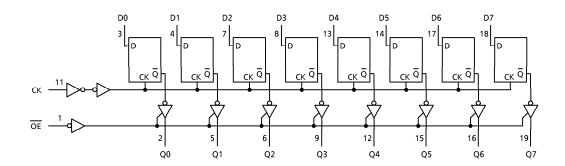
The products described in this document are subject to the foreign exchange and foreign trade laws.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

Pin Assignment

IEC Logic Symbol



Truth Table

	INPUTS	OUTPUTS	
ŌĒ	CK	D	OUTFUTS
Н	Х	Х	Z
L	J.	Х	Qn
L		L	L
L		Н	Н

X : Don't Care Z : High Impedance Qn : No change

System Diagram

Maximum Ratings

PARAMETER	SYMBOL	RATING	UNIT	
Supply Voltage Range	V _{CC}	-0.5~7.0	V	
DC Input Voltage	VIN	-0.5~7.0	٧	
DC Output Voltage	V	−0.5~7.0 (Note 1)	V	
DC Output Voltage	Vout	-0.5~V _{CC} + 0.5 (Note 2)	, v	
Input Diode Current	ΙΙΚ	– 50	mA	
Output Diode Current	loк	±50 (Note 3)	mΑ	
DC Output Current	IOUT	± 50	mΑ	
Power Dissipation	PD	180	mW	
DC V _{CC} /Ground Current	ICC / IGND	± 100	mA	
Storage Temperature	T _{stg}	- 65∼150	°C	

(Note 1): Output in Off-State

(Note 2): High or Low State. IOUT absolute maximum rating must be observed.

(Note 3): $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Recommended Operating Conditions

PARAMETER	SYMBOL	RATING	UNIT	
Supply Valtage	V	2.0~3.6	V	
Supply Voltage	VCC	1.5~3.6 (Note 4)	\ \	
Input Voltage	VIN	0~5.5	V	
Output Valtana	\/	0~5.5 (Note 5)	V	
Output Voltage	Vout	0~ V _{CC} (Note 6)		
Output Compant	1/1	± 24 (Note 7)	A	
Output Current	OH/IOL	± 12 (Note 8)	8) mA	
Operating Temperature	Topr	- 40~85	°C	
Input Rise And Fall Time	dt/dv	0~10 (Note 9)	ns / V	

(Note 4): Data Retention Only (Note 5): Output in Off-State

(Note 6): High or Low State

(Note 7): $V_{CC} = 3.0 \sim 3.6 \text{ V}$ (Note 8): $V_{CC} = 2.7 \sim 3.0 \text{ V}$ (Note 9): $V_{IN} = 0.8 \sim 2.0 \text{ V}$, $V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC characteristics (Ta = $-40 \sim 85$ °C)

PARAN	METER	SYMBOL	TEST CO	NDITION	V _{CC} (V)	Min	Max	UNIT
Input	"H" Level	V_{IH}			2.7~3.6	2.0	_	V
Voltage	"L" Level	V _{IL}			2.7~3.6	_	0.8	V
				$I_{OH} = -100 \mu A$	2.7~3.6	V _C C - 0.2		
	"H" Level	Voн	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
				$I_{OH} = -18 \text{mA}$	3.0	2.4	_	
Output				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	V
Voltage			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I _{OL} = 100 μA	2.7~3.6	_	0.2	
	"L" Level	v_{OL}		V_{OL} $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 12 \text{ mA}$	I _{OL} = 12 mA	2.7	_	0.4
	L Level	VOL	I VIN - VIH OI VIL	I _{OL} = 16 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input Leaka	ge Current	ΙΝ	V _{IN} = 0~5.5 V		2.7~3.6	_	± 5.0	μ A
3-State Outp Off-State Cu		loz	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0 \sim 5.5 \text{ V}$		2.7~3.6	_	± 5.0	μ A
Power Off L Cuurent	.eakage	lOFF	V _{IN} / V _{OUT} = 5.5 V		0	_	10.0	μΑ
Quiescent Su	upply	1	V _{IN} = V _{CC} or GND		2.7~3.6	_	10.0	
Current		ICC	V _{IN} / V _{OUT} = 3.6~5.5 V		2.7~3.6	_	± 10.0	μ A
Increase In Input	I _{CC} Per	Δlcc	V _{IH} = V _{CC} - 0.6 V		2.7~3.6	_	500	μΑ

AC characteristics (Ta = $-40 \sim 85$ °C)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	Min	Max	UNIT
Maximum Clock	faces	(Fig.1, 2)	2.7	_	_	MHz
Frequency	^f MAX	(Fig. 1, 2)	3.3 ± 0.3	150	_	IVITZ
Propagation Delay	t _{pLH}	/Fig 1 2)	2.7	_	9.5	ns
Time (CK-Q)	t _{pHL}	(Fig.1, 2)	3.3 ± 0.3	1.5	8.5	115
Output Enable Time	^t pZL	(Fig.1, 3)	2.7		9.5	ns
Output Enable Time	^t pZH	(Fig. 1, 3)	3.3 ± 0.3	1.5	8.5	115
Output Disable Time	t _{pLZ}	(Fig.1, 3)	2.7	-	8.5	ns
Output Disable Time	t _{pHZ}	(Fig. 1, 3)	3.3 ± 0.3	1.5	7.5] " [
Minimum Pulse Width	t _W (H)	(Fig. 1, 2)	2.7	4.0	-	
(CK)	t _W (L)	(Fig.1, 2)	3.3 ± 0.3	3.3	_	ns
Minimum Cat Un Tima	+	/Fi~ 1 2)	2.7	2.5	_	
Minimum Set-Up Time	t _s	(Fig.1, 2)	3.3 ± 0.3	2.5	_	ns
Minimum Hold Time	41	/Fi~ 1 2)	2.7	1.5	_	
Minimum Hola Time	^t h	(Fig.1, 2)	3.3 ± 0.3	1.5	_	ns
Output To Output	tosLH	/Note 1	2.7	_	_	
Skew	^t osHL	(Note 10)	3.3 ± 0.3	_	1.0	ns

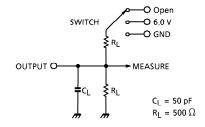
(Note 10): Parameter guaranteed by design. $(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, \ t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, Input t_r = t_f = 2.5 ns, C_L = 50 pF, R_L = 500 Ω)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	Тур.	UNIT
Quiet Output Maximum Dynamic VOL	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet Output Minimum Dynamic VOL	V _{OLV}	$V_{IH} = 3.3 V, V_{IL} = 0 V$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)

PARAMETER	SYMBOL	TEST CONDITION		V _{CC} (V)	Тур.	UNIT
Input Capacitance	CIN			3.3	7	pF
Output Capacitance	COUT	_		3.3	8	pF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10 MHz	(Note 11)	3.3	25	pF


(Note 11): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

Average operating current can be obtained by the equation :

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8 \text{ (per bit)}$

Test Circuit

Fig.1

PARAMETER	SWITCH
^t pLH ^{, t} pHL	Open
t _{pLZ} , t _{pZL}	6.0 V
^t pHZ ^{, t} pZH	GND
t_W , t_S , t_h , f_{MAX}	Open

AC Waveform

Fig.2 t_{pLH} , t_{pHL} , t_{w} , t_{s} , t_{h}

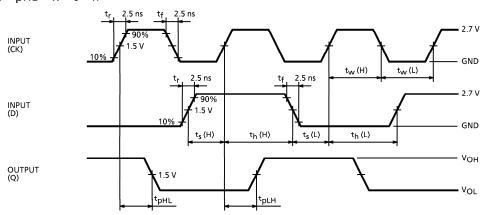
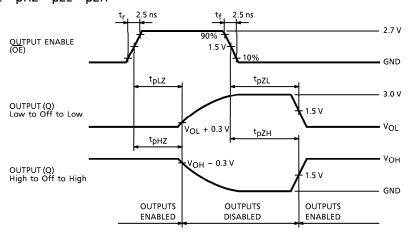
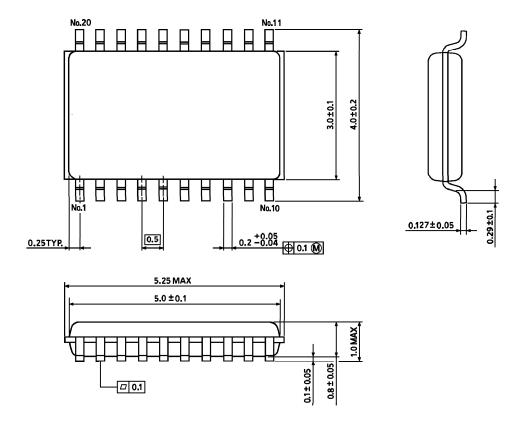




Fig.3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

PACKAGE DIMENSIONS VSSOP20-P-0030-0.50

Unit: mm

Weight: 0.03 g (typ.)