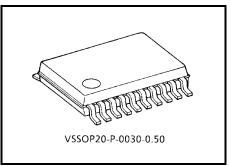
TOSHIBA CMOS Didital Integrated Circuit Silicon Monolithic

TC7MET240AFK,TC7MET244AFK


Octal Bus Buffer

TC7MET240AFK Inverted, 3-State Outputs TC7MET244AFK Non-Inverted, 3-State Outputs

The TC7MET240AFK and 244AFK are advanced high speed CMOS octal bus buffers fabricated with silicon gate C^2MOS technology. They achieve the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

The TC7MET240AFK is an inverting 3-state buffer having two active-low output enables. TC7MET244AFK is a non-inverting 3-state buffer, and has two active-low output enables.

These devices are designed to be used with 3-state memory address drivers, etc.

Weight: 0.03 g (typ.)

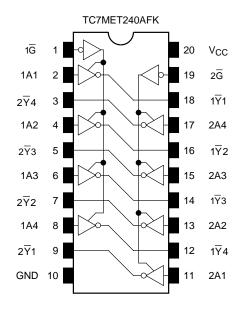
The input voltage are compatible with TTL output voltage.

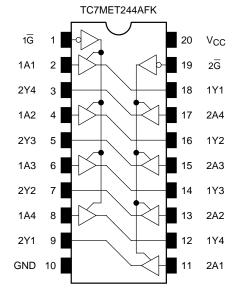
These devices may be used as a level converter for interfacing 3.3 V to 5 V system.

Input protection and output circuit ensure that 0 to 5.5 V can be applied to the input and output (*) pins without regard to the supply voltage. These structure prevents device destruction due to mismatched supply and input/output voltages such as battery back up, hot board insertion, etc.

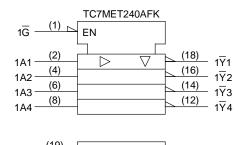
*: output in off-state

Features

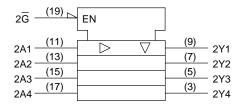

- High speed: $t_{pd} = 5.6 \text{ ns} (typ.) (V_{CC} = 5 \text{ V})$
- Low power dissipation: $I_{CC} = 4 \mu A (max) (Ta = 25^{\circ}C)$
- Compatible with TTL outputs: VIL = 0.8 V (max)


 $V_{IH} = 2.0 V (min)$

- Power down protection is provided on all inputs and outputs.
- Balanced propagation delays: $t_{pLH}\approx t_{pHL}$
- Low noise: $V_{OLP} = 1.0 V (max)$
- Pin and function compatible with the 74 series (74AC/HC/F/ALS/LS etc.) 240/244 type.


TOSHIBA

Pin Assignment (top view)



IEC Logic Symbol

2G (19)	EN		
2A1 - (11) - (13) - (13) - (15) - (15) - (17) - ((9) (7) (5) (3)	$\begin{array}{r} 2\overline{Y}1 \\ 2\overline{Y}2 \\ 2\overline{Y}2 \\ 2\overline{Y}3 \\ 2\overline{Y}4 \end{array}$

TC7MET244AFK (1) 1G ΕN (2) (18) ∇ \triangleright - 1Y1 1A1 (4) (16) - 1Y2 1A2 (6) (14) - 1Y3 1A3 (12) 1Y4 (8) 1A4

Truth Table

Inp	uts	Outputs			
IG	A _n	Yn	\overline{Y}_n		
L	L	L	н		
L	Н	Н	L		
Н	Х	Z	Z		

X: Don't care

Z: High impedance

Yn: TC7MET244AFK

Yn: TC7MET240AFK

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	V	-0.5~7.0 (Note1)	V
DC output voltage	VOUT	-0.5~V _{CC} + 0.5 (Note2)	v
Input diode current	I _{IK}	-20	mA
Output diode current	I _{OK}	±20 (Note3)	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±75	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Note1: Output in off-state

Note2: High or low state. IOUT absolute maximum rating must be observed.

Note3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	4.5~5.5	V
Input voltage	V _{IN}	0~5.5	V
Output voltage	Maxim	0~5.5 (Note4)	V
Output voltage	Vout	0~V _{CC} (Note5)	v
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~20	ns/V

Note4: Output in off-state

Note5: High or low state

Electrical Characteristics

DC Characteristics

Characteristics Symbol		Symbol	Test Condition		Ta = 25°C			Ta = -40~85°C		Unit	
Characte	51150105	Symbol	Test bondmon		$V_{CC}(V)$	Min	Тур.	Max	Min	Max	Onit
Input voltage	High level	VIH		_	4.5~5.5	2.0		_	2.0	_	V
input voitage	Low level	VIL		_	4.5~5.5	_	_	0.8	_	0.8	v
	High level	V _{OH}	$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$	4.5	4.4	4.5	_	4.4	_	
	Fightiever	VОН	or V _{IL}	$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80	_	V
Output voltage Low level		V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 50 \ \mu A$	4.5	_	0	0.1	_	0.1	v
	LOW IEVEI			$I_{OL} = 8 \text{ mA}$	4.5	_	_	0.36	_	0.44	
3-state output of	f-state current	I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		5.5	_	—	±0.25	—	±2.50	μΑ
Input leakage cu	ırrent	I _N	$V_{IN} = 5.5$	V or GND	0~5.5			±0.1		±1.0	μA
		ICC	$V_{IN} = V_{CC}$; or GND	5.5			4.0		40.0	μA
Quiescent suppl	y current	ICCT		V _{IN} = 3.4 V ut: V _{CC} or GND	5.5	_	1.35 - 1.50		1.50	mA	
Output leakage	current	I _{OPD}	$V_{OUT} = 5.5 V$		0	_		0.5		5.0	μA

AC Characteristics (Input: t_r = t_f = 3 ns)

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40~85°C		Unit
Characteristics	Symbol	Test Condition	$V_{CC}(V)$	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
Propagation delay time	t _{pLH}		5.0 ± 0.5	15		5.6	7.8	1.0	9.0	ns
(TC7MET240AFK)	t _{pHL}		50	_	6.1	8.8	1.0	10.0	113	
Propagation delay time	t _{pLH}		50 ± 0.5	15		5.4	7.4	1.0	8.5	ns
(TC7MET244AFK)	t _{pHL}			50		5.9	8.4	1.0	9.5	115
3-state output enable time $\int_{1}^{t} pZL R_{I} =$	R _I = 1 kΩ 5	50105	15		7.7	10.4	1.0	12.0	20	
5-state output enable time	t _{pZH}	$K_{L} = 1 K_{2}$	5.0 ± 0.5	50		8.2	11.4	1.0	13.0) ns
3-state output disable time	t _{pLZ} t _{pHZ}	$R_L = 1 \ k\Omega$	5.0 ± 0.5	50		8.8	11.4	1.0	13.0	ns
Output to output skew	t _{osLH} t _{osHL}	(Note6)	5.0 ± 0.5	50			1.0	_	1.0	ns
Input capacitance	C _{IN}	-			_	4	10		10	pF
Output capacitance	C _{OUT}	-	_		_	9			_	pF
Power dissipation	0	TC7MET240AFK			19				pF	
capacitance (Note7)	C _{PD}	TC7MET244AFK			_	18	_		_	ΡF

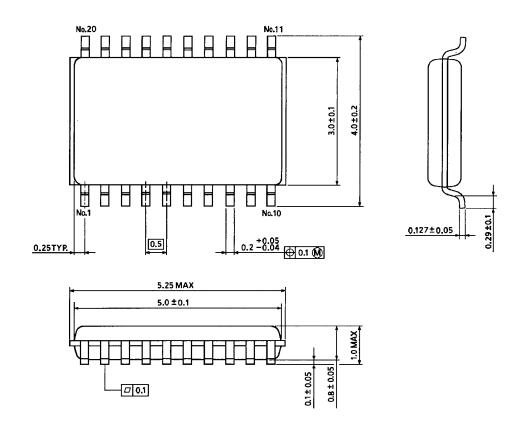
Note6: Parameter guaranteed by design.

 $t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \ t_{OSHL} = |t_{pHLm} - t_{pHLn}|$

Note7: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $\log (x) = C \exp(\log x) \log x$

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$


Noise Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol Test Condition			Ta = 25°C		Unit
	Symbol			Тур.	Limit	Onit
Quiet output maximum dynamic V_{OL}	V _{OLP}	$C_L = 50 \text{ pF}$	5.0	0.8	1.0	V
Quiet output minimum dynamic V_{OL}	V _{OLV}	$C_L = 50 \text{ pF}$	5.0	-0.8	-1.0	V
Minimum high level dynamic input voltage V_{IH}	VIHD	$C_L = 50 \text{ pF}$	5.0	_	2.0	V
Maximum high level dynamic input voltage V_{IL}	V _{ILD}	$C_L = 50 \text{ pF}$	5.0	_	0.8	V

Package Dimensions

VSSOP20-P-0030-0.50

Unit : mm

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.