

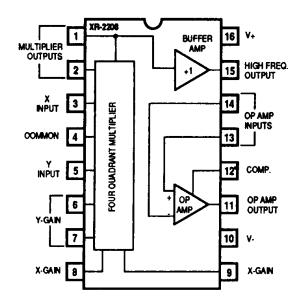


# **Operational Multiplier**

# **GENERAL DESCRIPTION**

The XR-2208 operational multiplier combines a fourquadrant analog multiplier (or modulator), a high frequency buffer amplifier, and an operational amplifier in a monolithic circuit that is ideally suited for both analog computation and communications signal processing application. As shown in the functional block diagram, for maximum versatility the multiplier and operational amplifier sections are not internally connected. They can be interconnected. with a minimum number of external components, to perform arithmetic computation, such as multiplication, division, square-root extraction. The operational amplifier can also function as a preamplifier for low-level input signals, or as a post detection amplifier for synchronous demodulator applications. For signal processing, the high frequency buffer amplifier output is available at pin 15. This multiplier/ buffer amplifier combination extends the small signal 3-db bandwidth to 8-MHz and the transconductance bandwidth to 100 MHz.

The XR-2208 operates over a wide range of supply voltages,  $\pm 4.5V$  to  $\pm 16V$ . Current and voltage levels are internally regulated to provide excellent power supply rejection and temperature stability.


#### **FEATURES**

Maximum Versatility Independent Multiplier, Op Amp, and Buffer Excellent Linearity (0.3% typ.) Wide Bandwidth 3 dB B.W.-8 MHz typ, 3^0^ Phase Shift B.W-1.2 MHz typ. Transconductance B.W-100 MHz typ. Simplified Offset Adjustments Wide Supply Voltage Range (+4.5V to ±16V)

#### **APPLICATIONS**

| Analog Computation    | Triangle-to-Sine wave   |
|-----------------------|-------------------------|
| Multiplication        | Converter               |
| Division              | AGC Amplifier           |
| Squaring              | Phase Detector          |
| Square-Root           | Phase-Locked Loop (PLL) |
| Signal Processing     | Applications            |
| AM Generation         | Motor Speed Control     |
| Frequency Doubling    | Precision PLL           |
| Frequency Translation | Carrier Detection       |
| Synchronous AM Detect | on Phase-Locked AM      |
| -                     | Demodulation            |

## FUNCTIONAL BLOCK DIAGRAM



#### **ABSOLUTE MAXIMUM RATINGS**

| Power Supply V <sup>+</sup> | +18 Volts        |
|-----------------------------|------------------|
| V-                          | -18 Volts        |
| Power Dissipation           |                  |
| Ceramic Package             | 750mW            |
| Derate above +25° C         | 6mW/°C           |
| Storage Temperature Range   | -65°C to + 150°C |

## SYSTEM DESCRIPTION

The XR-2208 operational multiplier contains a fourquadrant multiplier with a buffer amplifier for one of the differential outputs for applications requiring high frequency applications. The inputs have a dynamic response of 4 MHz (8 MHz for the X input) and a transconductance bandwidth of 100 MHz for phase detector applications. The fully independent operational amplifier features high gain and a large common mode rejection ratio (90 dB). The device can be powered by voltages from  $\pm 4.5$  VDC to  $\pm 16$ VDC.

Downloaded from Elcodis.com electronic components distributor

Rev-B

# ELECTRICAL PERFORMANCE CHARACTERISTICS - XR-2208

|                                       |        |                    |                  | LIMITS |      |      | GROUP A  |
|---------------------------------------|--------|--------------------|------------------|--------|------|------|----------|
| TEST                                  | SYMBOL | CONDITIONS         | TEMPERATURE      | MIN    | MAX  | UNIT | SUBGROUP |
| Cumply Current                        |        | Vs = ±4.5V         | Ta = +25°C       | 1      | 7.0  | mA   | 1        |
| Supply Current                        |        | V3 = 14.5V         | -55°C≤TA≤+125°C  |        | 7.0  | mA   | 2,3      |
| Supply Current                        | lcc    | Vs = ±16.0V        | TA = +25°C       |        | 7.0  | mA   | 1        |
| Supply Current                        |        | V3 = 110.0V        | -55°C≤TA≤+125°C  |        | 7.0  | mA   | 2,3      |
| Multiplier Output                     | Mvo    | Pin 1              | Ta = +25°C       | 12.2   | 13.7 | v    | 1        |
| Voltage                               |        |                    | -55°C≤Ta≤+125°C  | 12.2   | 13.7 | V    | 2,3      |
| Multiplier Output                     | Mvo    | Pin 2              | Ta = +25°Ç       | 12.2   | 13.7 | v    | 1        |
| Voltage                               |        |                    | -55°C≤Ta≤+125°C  | 12.2   | 13.7 | V    | 2,3      |
| Multiplier Output                     | Mvos   |                    | Ta = +25°C       | -80    | 80   | mV   | • 1      |
| Offset Voltage                        |        |                    | -55°C≤Ta≤+125°C  | -80    | 80   | mV   | 2,3      |
| Feedthrough                           | VFT    | Vx = -10V, Vy = 0  | TA = +25°C       | -150   | 150  | m∨   | 4        |
|                                       |        |                    | -55°C≤Ta≤+125°C  | -150   | 150  | mV   | 5,6      |
| Feedthrough                           | VFT    | Vx = 0, Vy = -10V  | TA = +25°C       | -150   | 150  | mV   | 4        |
| · · · · · · · · · · · · · · · · · · · |        |                    | -55°C≤Ta≤ +125°C | -150   | 150  | mV   | 5,6      |
| Feedthrough                           | VFT    | Vx = 0, Vy = 10V   | TA = +25°C       | -150   | 150  | mV   | 4        |
| ,                                     |        |                    | -55°C≤Ta≤+125°C  | -150   | 150  | mV   | 5,6      |
| Feedthrough                           | VFT    | Vx = 0, Vy = 10V   | TA = +25°C       | -150   | 150  | mV   | 4        |
| · g.:                                 |        |                    | -55°C≤Ta≤+125°C  | -150   | 150  | mV   | 5,6      |
| Nonlinearity                          | NLIN   | Vx = 10V           | TA = +25°C       | -0.5   | 0.5  | %    | 9        |
|                                       |        | -1OV≤Vy≤10V        | -55°C≤Ta≤+125°C  | -1.0   | 1.0  | %    | 10,11    |
| Nonlinearity                          | NLIN   | Vx = -10V          | TA = +25°C       | -0.5   | 0.5  | %    | 9        |
|                                       |        | -10V≤Vy≤10V        | -55°C≤Ta≤+125°C  | -1.0   | 1.0  | %    | 10,11    |
| Nonlinearity                          | NLIN   | Vy = +10V          | TA = +25°C       | -0.5   | 0.5  | %    | 9        |
| ,                                     |        | -10V≤Vx≤10V        | -55°C≤Ta≤+125°C  | -1.0   | 1.0  | %    | 10,11    |
| Nonlinearity                          | NLIN   | Vy =10V            | Ta = +25°C       | -0.5   | 0.5  | %    | 9        |
| ·····                                 |        | -10V≤Vx≤10V        | -55°C≤Ta≤+125°C  | -1.0   | 1.0  | %    | 10,11    |
| Input Bias Current                    | Івх    | XINPUT             | TA = +25°C       | -6.0   | 6.0  | μΑ   | 1        |
|                                       |        |                    | -55°C≤Ta≤+125°C  | -6.0   | 6.0  | μΑ   | 2,3      |
| Input Bias Current                    | İBY    | YINPUT             | Ta = +25°C       | -6.0   | 6.0  | μΑ   | 1        |
| · · · · · · · · · · · · · · · · · · · |        |                    | -55°C≤Ta≤+125°C  | -6.0   | 6.0  | μΑ   | 2,3      |
| Input Bias Current                    | IBC    | Common Input       | TA = +25°C       | -12.0  | 12.0 | μΑ   | 1        |
| ·                                     |        |                    | -55°C≤Ta≤+125°C  | -12.0  | 12.0 | μA   | 2,3      |
| Buffer Voltage Gair                   | BG     |                    | TA = +25°C       | 0.8    | 1.1  |      | 4        |
|                                       |        |                    | -55°C≤Ta≤+125°C  | 0.8    | 1.1  |      | 5,6      |
| Buffer Output                         | Bvo    | Vx = 10V, Vy = -10 |                  | 10.0   | 13.0 | V    | 1        |
| Voltage High                          |        |                    | -55°C≤Ta≤+125°C  | 10.0   | 13.0 | V    | 2,3      |

| Buffer Output          | BVOD  | Vx = -10V, Vy = 10V | TA = +25°C      | -2.1  | -0.55 | V  | 1   |  |
|------------------------|-------|---------------------|-----------------|-------|-------|----|-----|--|
| Voltage Difference     |       |                     | -55°C≤Ta≤+125°C | -2.1  | -0.55 | V  | 2,3 |  |
| Input Offset           | Vos   |                     | TA = +25°C      | -3.0  | 3.0   | mV | 1   |  |
| Voltage                |       |                     | -55°C≤Ta≤+125°C | -3.0  | 3.0   | mν | 2,3 |  |
| Input Offset           | los   |                     | TA = +25°C      | -75.0 | 75.0  | nA | 1   |  |
| Voltage                |       |                     | -55°C≤Ta≤+125°C | -75.0 | 75.0  | nA | 2,3 |  |
| Input Bias             | Ів    |                     | TA = +25°C      | -200  | 200   | nA | 1   |  |
| Current                |       |                     | -55°C≤TA≤+125°C | -200  | 200   | nA | 2.3 |  |
| Common Mode            | CMRR  |                     | Ta = +25°C      | 70    |       | dB | 1   |  |
| <b>Rejection Ratio</b> |       |                     | -55°C≤TA≤+125°C | 70    |       | dB | 2.3 |  |
| Voltage Gain           | AVOL  |                     | Ta = +25°C      | 70    |       | dB | 4   |  |
| 5                      |       |                     | -55°C≤Ta≤+125°C | 70    |       | dB | 5,6 |  |
| Power Supply           | PSR R |                     | Ta = +25°C      | 70    |       | dB | 1   |  |
| Rejection              |       |                     | -55°C≤TA≤+125°C | 70    |       | dB | 2,3 |  |
| Output Voltage         | VOSWP |                     | Ta = +25°C      | 10.0  |       | v  | 4   |  |
| Swing Positive         |       |                     | -55°C≤Ta≤+125°C | 10.0  |       | V  | 5,6 |  |
| Output Voltage         | Voswn |                     | Ta = +25°C      |       | -10.0 | v  | 4   |  |
| Swing Negative         |       |                     | -55°C≤Ta≤+125°C |       | -10.0 | V  | 5,6 |  |
| Short Circuit          | ISCN  |                     | TA = +25°C      | -30.0 | -5.0  | mA | 1   |  |
| Current Negative       |       |                     | -55°C≤TA≤+125°C | -30.0 | -5.0  | mA | 2.3 |  |
| Short Circuit          | ISCP  |                     | Ta = +25°C      | 5.0   | 30.0  | mA | 1   |  |
| Current Positive       |       |                     | -55°C≤Ta≤+125°C | 5.0   | 30.0  | mA | 2.3 |  |

7