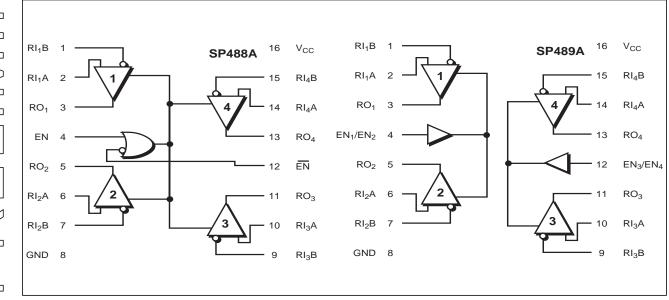


SP488A and SP489A


High Speed Quad RS-485/RS-422 Line Receivers

- High Speed Versions of Sipex's SP488 & SP489
- 30Mbps Transmission Rates
- Quad Differential Line Receivers
- RS-485 or RS-422 Applications
- Tri-state Output Control
- 30ns Typical Receiver Propagation Delays
- –7V to +12V Common Mode Input Range
- 1mA Supply Current
- Single +5V Supply Operation
- Pin Compatible with SN75173, SN75175, LTC488 and LTC489

DESCRIPTION...

The **SP488A** and **SP489A** are high speed quad differential line receivers capable of meeting the RS-485 and RS-422 protocols while running at five times the normal transmission rates. The **SP488A** and **SP489A** are enhanced versions of **Sipex's** SP488 and SP489 quad RS-485/RS-422 line receivers. The **SP488A** features a common receiver enable control; the **SP489A** provides independent receiver enable controls for each pair of receivers. Both feature tri–state outputs and wide common–mode input range. The receivers have a fail–safe feature which forces a logic "1" output when receiver inputs are left floating. Both are available in 16–pin plastic DIP and SOIC packages.

SP488A/489ADS/07

These are stress ratings only and functional operation of the device at these or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc}	+7V
Input Voltages	
Logic	–0.5V to (V _{cc} +0.5V)
Receiver	
Receiver Output Voltage	–0.5V to (V _{cc} +0.5V)
Input Currents	
Logic	±25mA
Storage Temperature	65°C to +150°C
Power Dissipation	
Plastic DIP	375mW
(derate 7mW/°C above +70°C)	
Small Outline	375mW
(derate 7mW/°C above +70°C)	
Lead Temperature (soldering, 10 sec)	

CAUTION: ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

SPECIFICATIONS

 $V_{_{CC}}$ = 5V±5%; typicals at 25°C; $T_{_{MIN}} \leq T_{_A} \leq T_{_{MAX}}$ unless otherwise noted.

MIN.	TYP.	MAX.	UNIT	CONDITIONS
				$EN, \overline{EN}, EN_1/EN_2, EN_3/EN_4$
2.0		0.8 ±2	Volts Volts μΑ	$0V \le V_{IN} \le V_{CC}$
12 -0.2		+0.2	kOhm Volts	$-7V \le V_{CM} \le 12V$ $-7V \le V_{CM} \le 12V$ $V_{cc} = 0V \text{ or } 5.25V; I_{IN2}$
30		+1.0 -0.8	mA mA Mbps	$V_{IN}^{UC} = +12V$ $V_{IN} = -7V$
3.5 ent		0.4 <u>+</u> 1	V V μA	$\begin{split} I_{O} &= -4\text{mA}; \ V_{ID} = +0.2\text{V} \\ I_{O} &= +4\text{mA}; \ V_{ID} = -0.2\text{V} \\ \text{EN} &= \emptyset, \ \text{EN} = \text{V}_{CC}, \ \text{EN}_{1}/\text{EN}_{2} = \emptyset, \\ \text{EN}_{3}/\text{EN}_{4} = \emptyset, \ 0.4\text{V} \leq \text{V}_{O} \leq 2.4\text{V} \end{split}$
4.75	TBD	5.25	Volts	mA No load
CHANICA	L			
			ပွံ သို့	
	2.0 12 -0.2 30 3.5 ent 4.75 CHANICA 0 -40 -65 16–	2.0 12 -0.2 30 3.5 ent 4.75 TBD CHANICAL 0 -40 -65 16–pin Plastic	2.0 $\begin{array}{c} 0.8\\ \pm 2\\ 12\\ -0.2\\ +0.2\\ +0.2\\ +1.0\\ -0.8\\ 30\\ 3.5\\ ent\\ 4.75\\ \underline{0.4}\\\pm 1\\ 4.75\\ \underline{12}\\ -0.8\\ 5.25\\ \underline{11}\\\underline{11}\\ 4.75\\ \underline{11}\\\underline{11}\\ 4.75\\ \underline{11}\\\underline{11}\\ 4.75\\ \underline{11}\\\underline{11}\\ 4.75\\ \underline{11}\\1$	2.0 0.8 Volts Volts 12 ± 2 μA -0.2 ± 0.2 μA 4.75 4.75 0.4 4.75 TBD 5.25 Volts μA 0 $+70$ -65 $+150$ 0 -65 -65 -150

 V_{cc} = 5V±5%; typicals at 25°C; 0°C ≤ T_A ≤ +70°C unless otherwise noted.

PARAMETER	MIN.	TYP.	MAX.	UNIT	CONDITIONS
PROPAGATION DELAY					
Receiver Input to Output					C ₁ = 15pF; <i>Figure 1, 3</i>
Low to HIGH (t _{PLH})		TBD		ns	
High to LOW (t		TBD		ns	
Differential Receiver Skew (t _s	., n)	TBD		ns	
Receiver Rise Time (t _R)					10% to 90%
SP488A		TBD		ns	
SP489A		TBD		ns	
Receiver Fall Time (t _F)					90% to 10%
SP488A		TBD		ns	
SP489A		TBD		ns	
RECEIVER ENABLE					
To Output HIGH		TBD		ns	C ₁ = 15pF; <i>Figures 2 and 4</i>
					(S2 closed)
To Output LOW		TBD		ns	CL = 15 pF; Figures 2 and 4
					(S1 closed)
RECEIVER DISABLE					
From Output LOW		TBD		ns	CL = 15pF; <i>Figures 2 and 4</i>
					(S1 closed)
From Output HIGH		TBD		ns	CL = 15 pF; Figures 2 and 4
• -					(S2 closed)

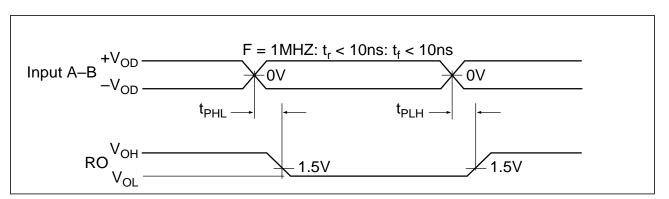


Figure 1. Receiver Propagation Delays

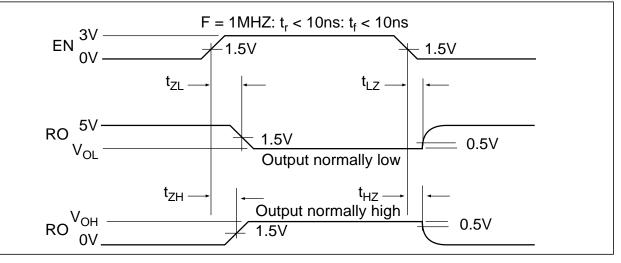
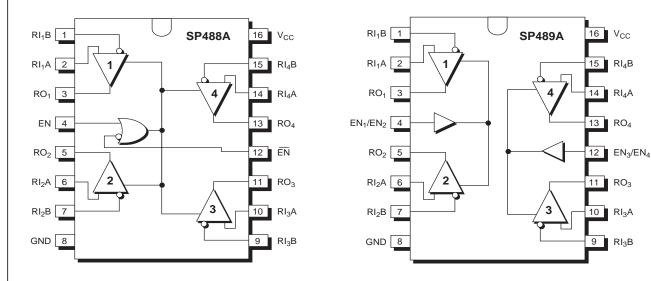



Figure 2. Receiver Enable/Disable Timing

SP488A/489ADS/07

PINOUT

SP488A PINOUT

Pin 1 — RI_1B — Receiver 1 input B.

Pin 2 — RI_1A _ Receiver 1 input A.

Pin 3 — RO_1 — Receiver 1 Output — If Receiver 1 output is enabled, if $RI_1A > RI_1B$ by 200mV, Receiver output is high. If Receiver 1 output is enabled, and if $RI_1A < RI_1B$ by 200mV, Receiver 1 output is low.

Pin 4 — EN — Receiver Output Enable. Please refer to **SP488A** *Truth Table (1)*.

Pin 5 — RO_2 — Receiver 2 Output — If Receiver 2 output is enabled, if $RI_2A > RI_2B$ by 200mV, Receiver 2 output is high. If Receiver 2 output is enabled, and if $RI_2A < RI_2B$ by 200mV, Receiver 2 output is low.

Pin 6 — $RI_{2}A$ — Receiver 2 input A.

Pin 7 — RI₂B — Receiver 2 input B.

Pin 8 — GND — Digital Ground.

Pin 9 — RI_3B — Receiver 3 input B.

Pin 10 — RI_3A — Receiver 3 input A.

Pin 11 — RO₃ — Receiver 3 Output — If Receiver 3 output is enabled, if $RI_3A > RI_3B$ by 200mV, Receiver 3 output is high. If Receiver 3 output is enabled, and if $RI_3A < RI_3B$ by 200mV, Receiver 3 output is low.

Pin 12 — \overline{EN} — Receiver Output Enable. Please refer to **SP488A** Truth Table (1).

Pin 13 — RO_4 — Receiver 4 Output — If Receiver 4 output is enabled, if $RI_4A > RI_4B$ by 200mV, Receiver 4 output is high. If Receiver 4 output is enabled, and if $RI_4A < RI_4B$ by 200mV, Receiver 4 output is low.

Pin 14 — RI_4A — Receiver 4 input A.

Pin 15 — RI_4B — Receiver 4 input B.

Pin 16 — Supply Voltage V_{CC} — 4.75V $\leq V_{CC} \leq$ 5.25V.

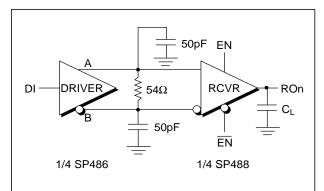


Figure 3. Timing Test Circuit

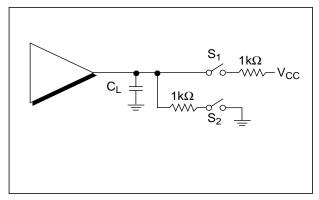


Figure 4. Enable/Disable Timing Test Circuit

SP489A PINOUT

Pin 1 — RI_1B — Receiver 1 input B.

Pin 2 — RI₁A — Receiver 1 input A.

Pin 3 — RO_1 — Receiver 1 Output — If Receiver 1 output is enabled, if $RI_{1A} > RI_1B$ by 200mV, Receiver output is high. If Receiver 1 output is enabled, and if $RI_1A < RI_1B$ by 200mV, Receiver 1 output is low.

Pin 4 — EN1/EN2 — Receiver 1 and 2 Output Enable. Please refer to **SP489A** *Truth Table* (2).

Pin 5 — RO_2 — Receiver 2 Output — If Receiver 2 output is enabled, if $RI_2A > RI_2B$ by 200mV, Receiver 2 output is high. If Receiver 2 output is enabled, and if $RI_2A < RI_2B$ by 200mV, Receiver 2 output is low.

Pin 6 — RI₂A — Receiver 2 input A.

Pin 7 — RI₂B — Receiver 2 input B.

Pin 8 — GND — Digital Ground.

Pin 9 — RI_3B — Receiver 3 input B.

Pin 10 — RI_3A — Receiver 3 input A.

Pin 11 — RO₃ — Receiver 3 Output — If Receiver 3 output is enabled, if $RI_3A > RI_3B$ by 200mV, Receiver 3 output is high. If Receiver 3 output is enabled, and if $RI_3A < RI_3B$ by 200mV, Receiver 3 output is low.

Pin 12 — EN3/EN4 — Receiver 3 and 4 Output Enable. Please refer to **SP489A** Truth Table (2).

Pin 13 — RO_4 — Receiver 4 Output — If Receiver 4 output is enabled, if $RI_4A > RI_4B$ by 200mV, Receiver 4 output is high. If Receiver 4 output is enabled, and if $RI_4A < RI_4B$ by 200mV, Receiver 4 output is low.

Pin 14 — RI_4A — Receiver 4 input A.

Pin 15 — RI_4B — Receiver 4 input B.

Pin 16 — Supply Voltage V_{CC} — 4.75V $\leq V_{CC} \leq$ 5.25V.

DIFFERENTIAL	ENA	OUTPUT	
A – B	EN	EN	RO
$V_{ID} \ge 0.2V$	H	X	H
	X	L	H
-0.2V < V _{ID} < +0.2V	H	X	X
	X	L	X
$V_{ID} \leq 0.2V$	H	X	L
	X	L	L
Х	L	Н	Hi–Z

DIFFERENTIAL	ENABLES	OUTPUT
A – B	EN ₁ /EN ₂ or EN ₃ /EN ₄	RO
$V_{ID} \ge 0.2V$	н	Н
$-0.2V < V_{ID} < +0.2V$	н	х
$V_{ID} \le 0.2V$	н	L
Х	L	Hi–Z

Table 2. SP489A Truth Table

Table 1. SP488A Truth Table

FEATURES...

The **SP488A** and **SP489A** are low–power quad differential line receivers meeting RS-485 and RS-422 serial protocol. The **SP488A** and **SP489A** feature **Sipex's** BiCMOS process allowing low power operational characteristics of CMOS technology while meeting all of the demands of the RS-485 and RS-422 serial protocols over 10Mbps under load in harsh environments. In fact, the **SP488A** and **SP489A** can transmit signals up to 30Mbps.

The RS-485 standard is ideal for multi-drop applications and for long-distance communication. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line. Normally an RS-485 driver will produce no less than 1.5V before cable attenuation. After cable loss, the signal may degrade and have an amplitude of less than 1.0V. The receiver input sensitivity of the **SP488A** and **SP489A** allows the devices to receive signals as low as 200mV.

The **SP488A** features active high and active low common receiver enable controls; the **SP489A** provides independent, active high receiver enable controls for each pair of receivers. Both feature tri–state outputs and a -7V to +12V common–mode input range permitting a \pm 7V ground difference between devices on the communications bus. The **SP488A/489A** are equipped with a fail–safe feature which forces a logic high at the receiver output when the input is left floating. Both are available in 16-pin plastic DIP and SOIC packages.

ORDERING INFORMATION

Quad RS485 Rece	eivers:		
Model	Enable/Disable	Temperature Range	e Package
SP488ACP	Common; active Low and	Active High 0°C to +70°C	16–pin Plastic DIP
SP488ACT	Common; active Low and	Active High 0°C to +70°C	
SP488AEP	Common; active Low and	Active High40°C to +85°C	
SP488AET	Common; active Low and	Active High40°C to +85°C	
SP489ACP	One per driver pair; active	e High	
SP489ACT	One per driver pair; active	e High 0°C to +70°C	
		e High –40°C to +85°C	
		e High –40°C to +85°C	•

Please consult the factory for pricing and availability on a Tape-On-Reel option.

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.