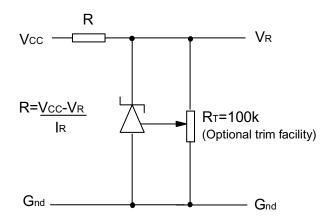
5.0V LOW POWER PRECISION REFERENCE SOURCE

ZRT050

ISSUE 1 - OCTOBER 1995

DEVICE DESCRIPTION

The ZRT050 is a monolithic integrated circuit providing a precise stable reference voltage of 4.9V at 500μ A.


The circuit features a knee current of $150\mu A$ and operation over a wide range of temperatures and currents.

The ZRT050 is available in a 3-pin metal can package for through hole applications as well as SOT223 and SO8 packages for surface mount applications. Each package option offers a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, the pin should be left open circuit.

FEATURES

- Trimmable output
- Excellent temperature stability
- Low output noise figure
- Available in two temperature ranges
- 1 and 2% initial voltage tolerance versions available
- No external stabilising capacitor required in most cases
- Low slope resistance
- TO18 package
- SOT223 and SO8 small outline packages

SCHEMATIC DIAGRAM

Figure 1:

This circuit will allow the reference to be trimmed over a wide range. The device is specified over a \pm 5% trim range.

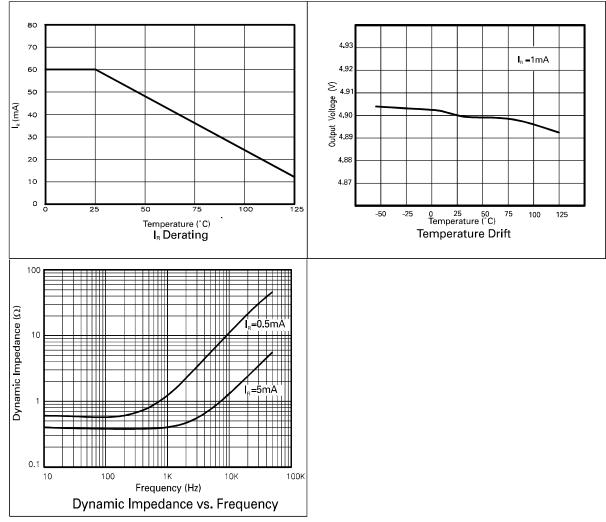
ZRT050

ABSOLUTE MAXIMUM RATING

		1 0 1 0 1
Reverse Current	60mA ø	TO18
Operating Temperature		SO8
A grade	-55°C to 125°C	SOT22
C grade	0°C to 70°C	ø Abo
Storage Temperature		derate
TO18	-55 °C to 175 °C	
SO8, SOT223	-55 °C to 125 °C	

Power Dissipation (T_{amb}=25°C)TO18300mWSO8625mWSOT2232WØ Above 25°C this figure should be linearly
derated to 12mA at 125°C

TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS


SYMBOL	SYMBOL PARAMETER	INITIAL VOLTAGE TOLERANCE %	GRADE A -55°C TO 125°C		GRADE C 0°C TO 70°C		UNITS
			ТҮР	MAX	ТҮР	MAX	
ΔV_R	Output voltage change over relevant temperature range (See note (a))	1 & 2	13.5	45.0	5.4	17.2	mV
T _C V _R	Output voltage temperature coefficient (See note (b))	1 & 2	15.0	50.0	15.0	50.0	ppm/°C

ELECTRICAL CHARACTERISTICS

(at T_{amb}=25°C and trim pin unless otherwise stated)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	COMMENTS
V _R	Output voltage 1% tolerance (A1,C1) 2% tolerance (C2)	4.85 4.80	4.90 4.90	4.95 5.00	V	I _R =500μΑ
ΔV_{TRIM}	Output voltage adjustment range		± 5		%	R_T =100k Ω
$T_C \Delta V_{TRIM}$	Change in TCV _R with output adjustment		2.5		ppm/°C/%	
I _R	Operating current range	0.15		60	mA	See note (c)
t _{on} t _{off}	Turn-on time Turn-off time		100 0.3		μs	$R_L=1k\Omega$
e _{np-p}	Output voltage noise (over the range 0.1 to 10Hz)		50		μV	Peak to peak measurement
R _S	Slope resistance		1.25	2.0	Ω	I _R = 0.5mA to 5mA See note (d)

ZRT050

TYPICAL CHARACTERISTICS

NOTES

(a) Output change with temperature (V_R)

The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range

$$\Delta V_R = V_{max} - V_{min}$$

(b) Output temperature coefficient (T_CV_R)

The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C

$$T_c V_R = \frac{\Delta V_R \times 10^6}{V_R \times \Delta T} ppm/°C$$

 ΔT = Full temperature range

(c) Operating current (I_R)

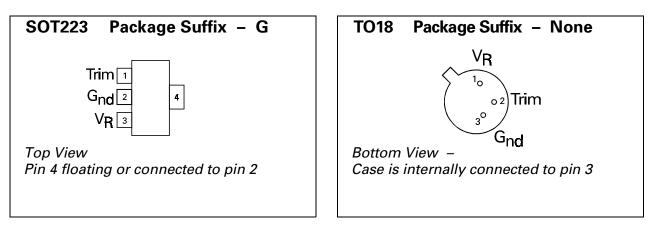
Maximum operating current must be derated as indicated in maximum ratings.

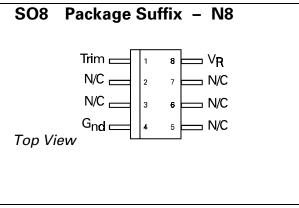
(d) Slope resistance (R_S)

The slope resistance is defined as :

$$R_S = \frac{changein V_R}{specified current range}$$

 $\Delta l = 5 - 0.5 = 4.5 mA (typically)$


(e) Line regulation


The ratio of change in output voltage to the change in input voltage producing it.

$$\frac{R_S \times 100}{V_R \times R_{source}} \%/V$$

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part No	Tol%	Operating Temp.(°C)	Package	Partmark
ZRT050C2	2	0 to 70	TO18	ZRT050C2
ZRT050C1	1	0 to 70	TO18	ZRT050C1
ZRT050A1	1	-55 to 125	TO18	ZRT050A1
ZRT050GC2	2	0 to 70	SOT223	ZRT050C2
ZRT050GC1	1	0 to 70	SOT223	ZRT050C1
ZRT050GA1	1	-55 to 125	SOT223	ZRT050A1
ZRT050N8C2	2	0 to 70	SO8	ZRT050C2
ZRT050N8C1	1	0 to 70	SO8	ZRT050C1
ZRT050N8A1	1	-55 to 125	SO8	ZRT050A1