PRECISION 4.1 VOLT MICROPOWER VOLTAGE REFERENCE

ISSUE 3 - FEBRUARY 1998

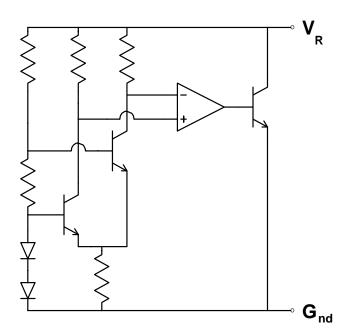
ZR4040-4.1

DEVICE DESCRIPTION

The ZR4040-4.1 uses a bandgap circuit design to achieve a precision micropower voltage reference of 4.1 volts. The device is available in small outline surface mount packages, ideal for applications where space saving is important, as well as packages for through hole requirements.

The ZR4040-4.1 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZR4040-4.1 is recommended for operation between $60\mu A$ and 15mA and so is ideally suited to low power and battery powered applications.

Excellent performance is maintained to an absolute maximum of 25mA, however the rugged design and 20 volt processing allows the reference to withstand transient effects and currents up to 200mA. Superior switching capability allows the device to reach stable operating conditions in only a few microseconds.


FEATURES

- Small outline SO8 and SOT23 packages
- TO92 style package
- No stabilising capacitor required
- Typical T_C 20ppm/°C
- Typical slope resistance 0.55Ω
- 2% and 1% tolerance
- Industrial temperature range
- Operating current 60μA to 15mA

APPLICATIONS

- Battery powered and portable equipment.
- Metering and measurement systems.
- Instrumentation.
- Test equipment.
- Data acquisition systems.
- Precision power supplies.
- Crystal oscillators.

SCHEMETIC DIAGRAM

ZR4040-4.1

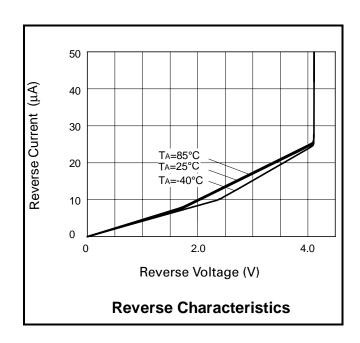
ABSOLUTE MAXIMUM RATING

Reverse Current 25mA Forward Current 25mA Operating Temperature -40 to 85°C Storage Temperature -55 to 125°C Power Dissipation (T_{amb}=25°C)

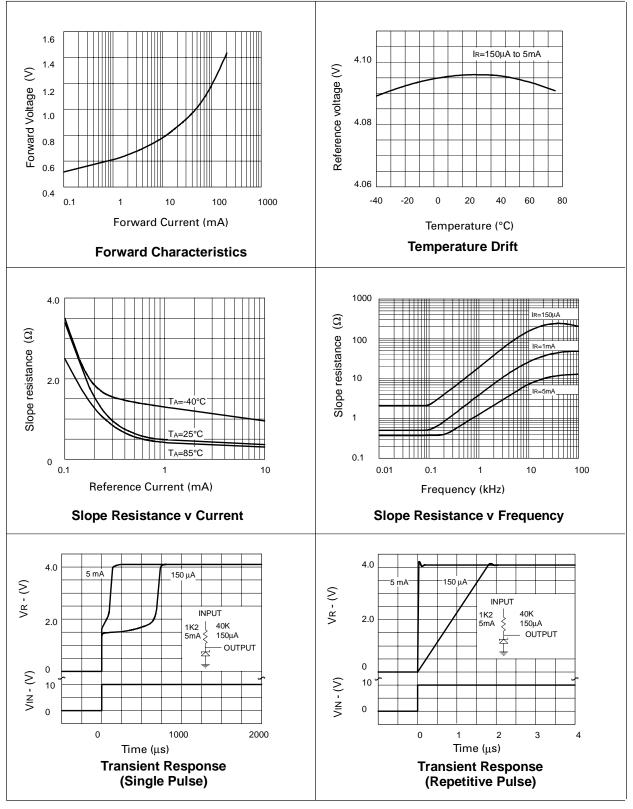
 SOT23
 330mW

 SO8
 625mW

 E-Line, 3 pin (TO92)
 500mW

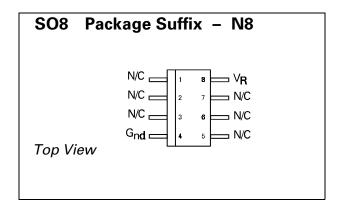

ELECTRICAL CHARACTERISTICS TEST CONDITIONS (Unless otherwise stated) T_{amb}= 25°C

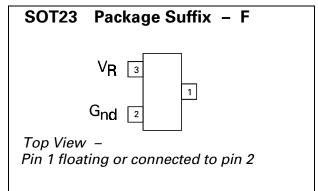
SYMBOL	PARAMETER	CONDITION	LIMITS		TOL	UNITS	
			MIN	TYP	MAX		
V_R	Reverse Breakdown Voltage	I _R =150μA	4.05 4.01	4.096 4.096		1 2	V
I _{MIN}	Minimum Operating Current			25	60		μΑ
I _R	Recommended Operating Current		0.06		15		mA
T _C †	Average Reverse Breakdown Voltage Temp. Co.	I _{R(min)} to I _{R(max)}		20	100		ppm/°C
R _S §	Slope Resistance			0.55	2		Ω
Z _R	Reverse Dynamic Impedance	I _R = 1mA f = 100Hz I _{AC} = 0.1 I _R		0.5	1.2		Ω
E _N	Wideband Noise Voltage	I _R = 1mA f = 10Hz to 10kHz		90			μV(rms)

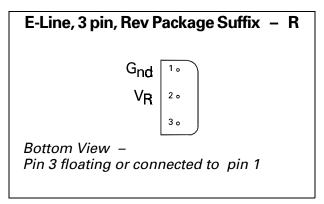

†
$$T_C = \frac{(V_{R(max)} - V_{R(min)}) \times 1000000}{V_R \times (T_{(max)} - T_{(min)})}$$

Note: $V_{R(max)}$ - $V_{R(min)}$ is the maximum deviation in reference voltage measured over the full operating temperature range.

$$8 R_S = \frac{V_R \ Change(I_R \ (min) \ to \ I_R \ (max))}{I_R \ (max) - I_R \ (min)}$$




TYPICAL CHARACTERISTICS



ZR4040-4.1

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part Number	Tol%	Package	Partmark		
ZR40402F41	2	SOT23	40E		
ZR40401F41	1	SOT23	40F		
ZR40402N841	2	S08	ZR4040241		
ZR40401N841	1	S08	ZR4040141		
ZR40402R41	2	E-Line *	ZR4040241		
ZR40401R41	1	E-Line *	ZR4040141		

^{*} E-Line, 3 pin Reversed