MOTOROLA SEMICONDUCTOR TECHNICAL DATA

LOW POWER, HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS

Quality bipolar fabrication with innovative design concepts are employed for the MC33181/2/4, MC34181/2/4, MC35181/2/4 series of monolithic operational amplifiers. This JFET input series of operational amplifiers operate at 210 μ A per amplifier and offer 4.0 MHz of gain bandwidth product and 10 V/ μ s slew rate. Precision matching and an innovative trim technique of the single and dual versions provide low input offset voltages. With a JFET input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response.

The MC33181/2/4, MC34181/2/4, MC35181/2/4 series of devices are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic and ceramic DIP as well as the SOIC surface mount packages.

Low Supply Current: 210 μA (Per Amplifier)
 Wide Supply Operating Range: ±1.5 V to ±18 V

Wide Bandwidth: 4.0 MHz
 High Slew Rate: 10 V/μs

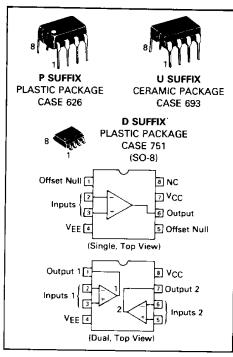
Low Input Offset Voltage: 2.0 mV

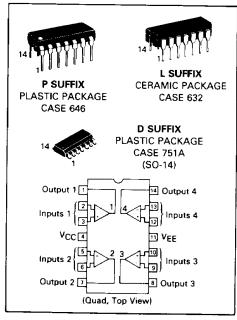
Large Output Voltage Swing: -14 V to +14 V (with ±15 V Supplies)

Large Capacitance Drive Capability: 0 to 500 pF

Low Total Harmonic Distortion: 0.04%

Excellent Phase Margin: 67°
Excellent Gain Margin: 6.7 dB
Output Short Circuit Protection

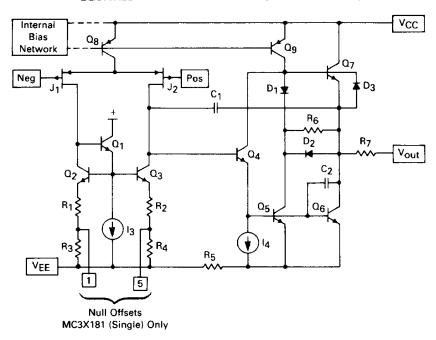

ORDERING INFORMATION

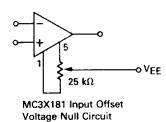

Op Amp Function	Device	Test Temperature Range	Package
Single	MC34181P MC34181D	0 to +70°C	Plastic DIP SO-8
	MC33181P MC33181D	- 40 to +85°C	Plastic DIP SO-8
	MC35181U	-55 to +125°C	Ceramic DIP
Dual	MC34182P MC34182D	0 to +70°C	Plastic DIP SO-8
	MC33182P MC33182D	-40 to +85°C	Plastic DIP SO-8
	MC35182U	-55 to +125°C	Ceramic DIP
Quad	MC34184P MC34184D	0 to +70°C	Plastic DIP SO-14
	MC33184P MC33184D	- 40 to +85°C	Plastic DIP SO-14
	MC35184L	55 to + 125°C	Ceramic DIP

MC34181,2,4 MC35181,2,4 MC33181,2,4

LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUITS


MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Supply Voltage (from V _{CC} to V _{EE})	VS	+ 36	Volts
Input Differential Voltage Range	V _{IDR}	Note 1	Volts
Input Voltage Range	VIR	Note 1	Volts
Output Short-Circuit Duration (Note 2)	ts	Indefinite	Seconds
Operating Junction Temperature Ceramic Package Plastic Package	Тл	+ 160 + 150	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +160 -60 to +150	°C

NOTES:

- 1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
- 2. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded (see Figure 1).

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)

MC34181,2,4, MC35181,2,4, MC33181,2,4

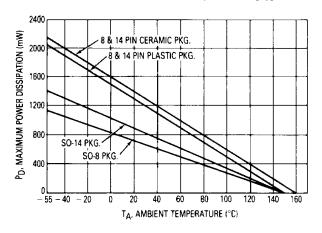
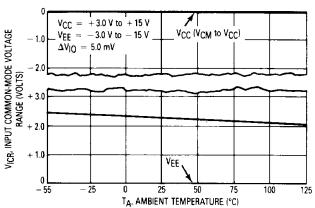
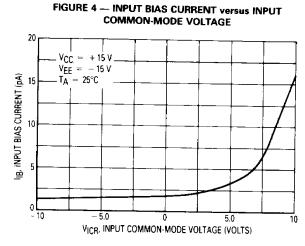
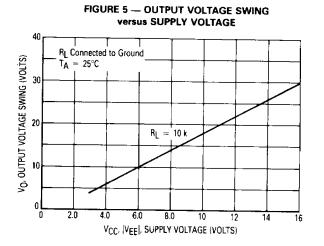
DC ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = 25^{\circ}\text{C}$ unless otherwise noted)

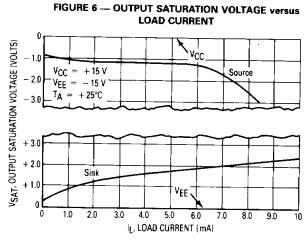
Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S = 50 Ω , V _O = 0 V)	VIO			-	mV
Single	10			Ì	"""
$T_A = +25^{\circ}C$			0.5	2.0	
$T_A = 0^{\circ}C \text{ to } +70^{\circ}C \text{ (MC34181)}$		_	_	3.0	1
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (MC33181)}$		_	_	3.5	
$T_A = -55^{\circ}\text{C to } + 125^{\circ}\text{C (MC35181)}$			_	4.5	
Dual				•	
$T_A = +25^{\circ}C$		_	1.0	3.0	
$T_A = 0^{\circ}C \text{ to } +70^{\circ}C \text{ (MC34182)}$		_	-	4.0	
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (MC33182)}$		_	<u> </u>	4.5	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C \text{ (MC35182)}$		_	-	5.5	
Quad		İ			
$T_A = +25^{\circ}C$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C \text{ (MC34184)}$	1	_	4.0	10	
$T_A = -40^{\circ}\text{C to } + 70^{\circ}\text{C (MC33184)}$ $T_{A} = -40^{\circ}\text{C to } + 85^{\circ}\text{C (MC33184)}$		_	-	11	1
		_	_	11.5	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C \text{ (MC35184)}$				12.5	
Average Temperature Coefficient of V_{IO} (Rs = 50 Ω , V_{O} = 0 V)	Δν _{ΙΟ} /ΔΤ		10		μV/°C
Input Offset Current ($V_{CM} = 0 \text{ V}, V_{Q} = 0 \text{ V}$)	lio				nA
$T_A = +25^{\circ}C$			0.001	0.05	
$T_A = 0^{\circ} C \text{ to } +70^{\circ} C$		_	-	1.0	
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		_	_	2.0	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$				13	
Input Bias Current ($V_{CM} = 0 \text{ V}, V_{O} = 0 \text{ V}$)	JIВ				nA
$T_A = +25^{\circ}C$		_	0.003	0.1	
$T_A = 0$ °C to $+70$ °C		_	l —	2.0	
$T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C}$		_	-	4.0	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$			_	25	
Input Common Mode Voltage Range	VICR	(V _{EE} + 4.0	V) to (V _C (– 2.0 V)	>
Large Signal Voltage Gain (R _L = 10 k Ω , V _O = \pm 10 V)	AVOL				V/mV
$T_A = +25^{\circ}C$	100	25	60		
$T_A = T_{low}$ to T_{high}		15	_	_	
Output Voltage Swing ($V_{ID} = 1.0 \text{ V}$, $R_{L} = 10 \text{ k}\Omega$)					1,
T _A = +25°C	Vo+	+ 13.5	+14	_	V
, n	\o'-	_	- 14	– 13 .5	
Common Mode Rejection (RS = 50 Ω , V _{CM} = V _{ICR} , V _O = 0 V)	CMR	70	86		dB
Power Supply Rejection (Rs = 50 Ω , V _{CM} = 0 V, V _O = 0 V)	PSR	70	84		dB
					
Output Short Circuit Current (V _{ID} = 1.0 V, Output to Ground) Source	Isc				mA
Sink	ľ	3.0	8.0	- 1	
		B.0	11		
Power Supply Current (No Load, V _O = 0 V)	l D				μA
Single					
$T_A = +25^{\circ}C$ $T_A = T_A + 5^{\circ}C$		- 1	210	250	
TA = T _{low} to T _{high} Dual	į l	-		250	
$T_A = +25^{\circ}C$					
		_	420	500	
T _A = T _{low} to T _{high} Quad		-	-	500	
$T_A = +25^{\circ}C$			240		
TA = Tlow to Thigh	i l	_	840	1000	
'A 'iow ' 'ingn				1000	

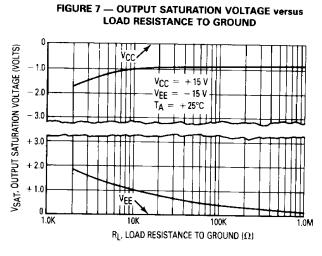
AC ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Siew Rate (V _{in} = -10 V to $+10$ V, R _L = 10 k Ω , C _L = 100 pF) AV = $+1.0$ AV = -1.0	SR	7.0 —	10 10	_	V/μs
Settling Time (AV = -1.0 , R _L = 10 k Ω , V $_{O}$ = 0 V to $+10$ V Step) To Within 0.10% To Within 0.01%	t _S	_	1.1 1.5	<u>-</u>	μS
Gain Bandwidth Product (f = 100 kHz)	GBW	3.0	4.0	_	MHz
Power Bandwidth (AV = $+1.0$, R _L = 10 k Ω , V _O = 20 V _{p-p} , THD = 5%)	вw _р	_	200	_	kHz
Phase Margin (– 10 V $<$ V $_{O}$ $<$ + 10 V) R $_{L}$ = 10 k Ω R $_{L}$ = 10 k Ω , C $_{L}$ = 100 pF	Ø _m	_	67 34	_	Degrees
Gain Margin (– 10 V $<$ V $_{0}$ $<$ + 10 V) RL = 10 k Ω RL = 10 k Ω , CL = 100 pF	A _m	_	6.7 3.4	_	dB
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1.0 \text{ kHz}$	en		38		nV/√ Hz
Equivalent Input Noise Current f = 1.0 kHz	in		0.01	_	pA∕√Hz
Differential Input Capacitance	Ci	_	3.0	_	pF
Differential Input Resistance	Ri	_	1012	_	Ω
Total Harmonic Distortion $A_V = 10, R_L = 10 k\Omega, 2 V_{p\text{-}p} < V_O < 20 V_{p\text{-}p}, f = 10 kHz$	THD	_	0.04	_	%
Channel Separation (R $_L =$ 10 k $\Omega,-$ 10 V $<$ V $_O <+$ 10 V, 0 Hz $<$ f $<$ 10 kHz)	_	_	120	_	dB
Open-Loop Output Impedance (f = 1.0 MHz)	Z _o	_	200	_	Ω

FIGURE 1 — MAXIMUM POWER DISSIPATION versus TEMPERATURE FOR PACKAGE VARIATIONS


FIGURE 2 — INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE



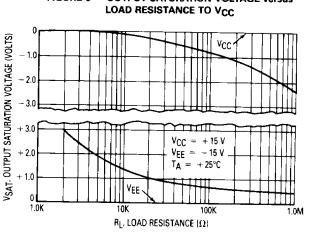


FIGURE 8 -- OUTPUT SATURATION VOLTAGE versus

FIGURE 9 — OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE

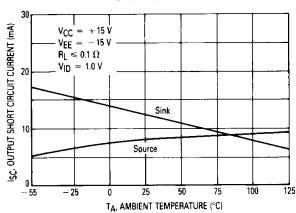


FIGURE 10 --- OUTPUT IMPEDANCE versus FREQUENCY

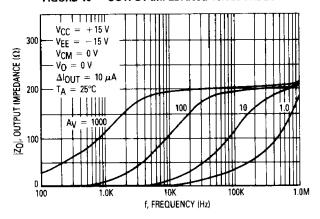


FIGURE 11 — OUTPUT VOLTAGE SWING versus FREQUENCY

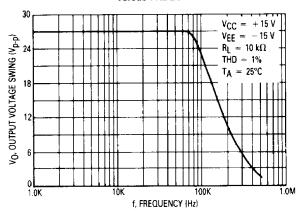


FIGURE 12 — OUTPUT DISTORTION versus FREQUENCY

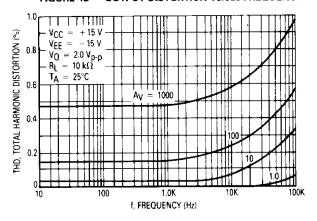


FIGURE 13 — OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE

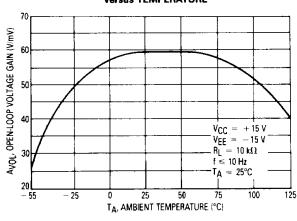


FIGURE 14 --- OPEN-LOOP VOLTAGE GAIN AND PHASE Versus FREQUENCY

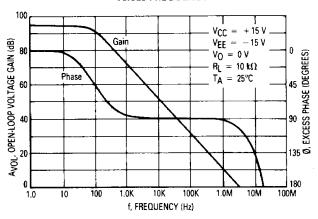


FIGURE 15 — NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE

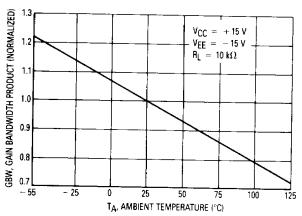


FIGURE 16 — OUTPUT VOLTAGE OVERSHOOT versus

LOAD CAPACITANCE

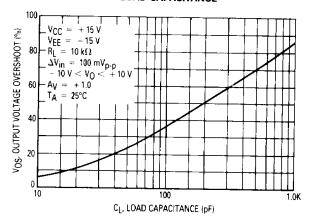


FIGURE 17 — PHASE MARGIN versus LOAD CAPACITANCE

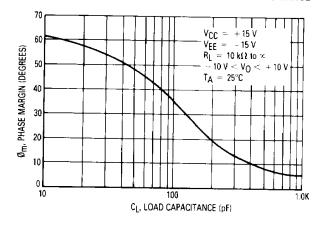


FIGURE 18 — GAIN MARGIN versus LOAD CAPACITANCE

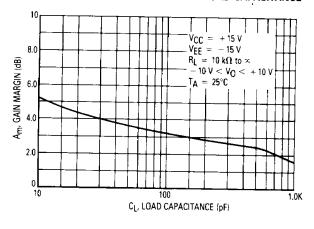
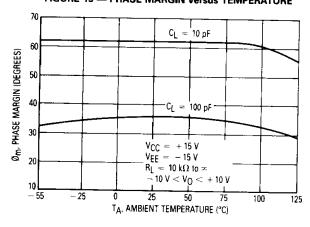
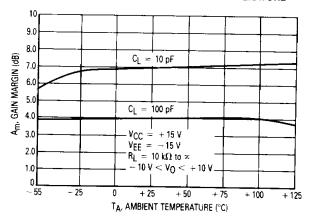
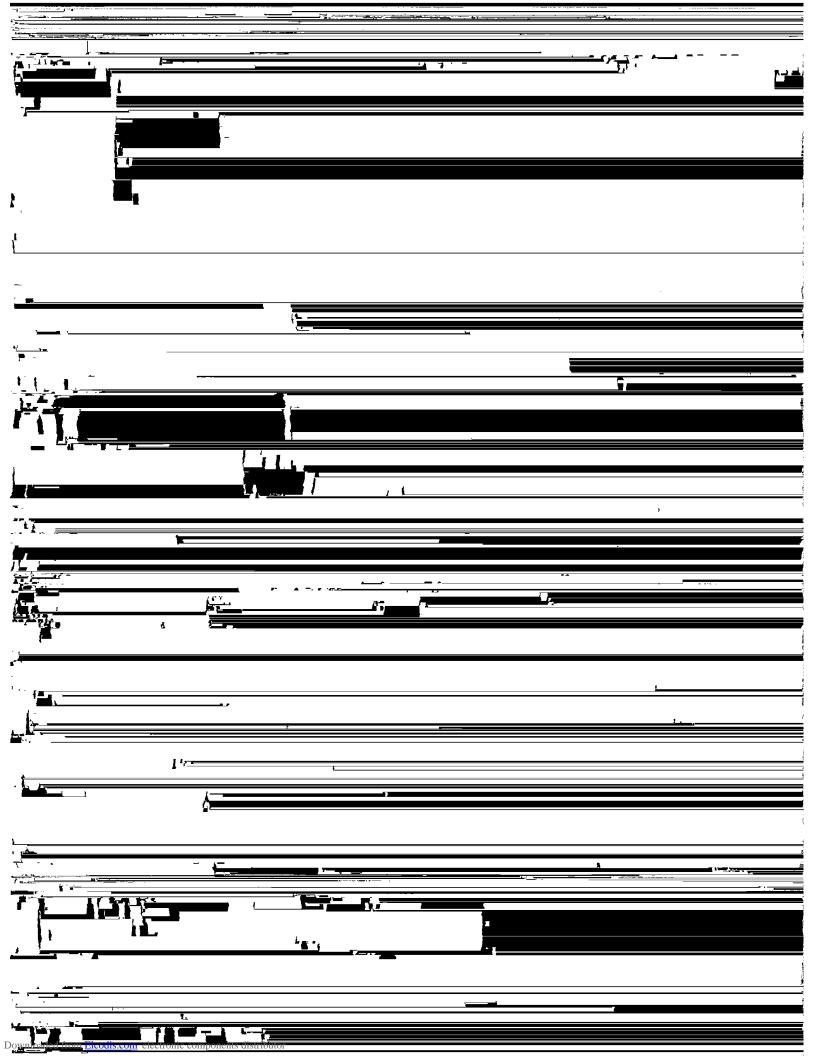
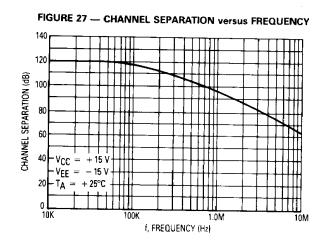
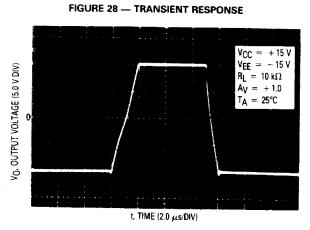
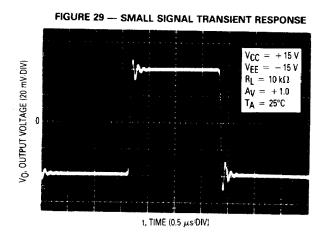


FIGURE 19 — PHASE MARGIN versus TEMPERATURE


FIGURE 20 — GAIN MARGIN versus TEMPERATURE

