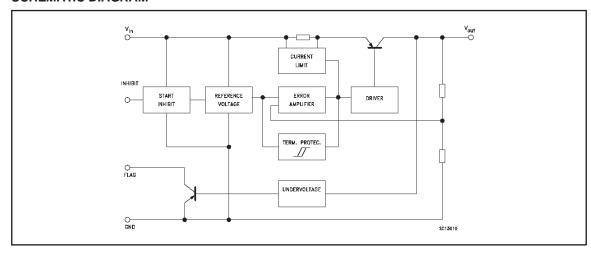


L4987 SERIES

VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT AND DROPOUT CONTROL FLAG

- VERY LOW DROPOUT VOLTAGE (0.25V TYP.)
- DROPOUT CONTROL FLAG
- VERY LOW QUIESCENT CURRENT (TYP. 90 μA IN OFF MODE, 500μA IN ON MODE)
- OUTPUT CURRENT UP TO 200 mA
- LOGIC-CONTROLLED ELECTRONIC SHUTDOWN
- OUTPUT VOLTAGES OF 3V, 5V 8.7V 12V
- INTERNAL CURRENT AND THERMAL LIMIT
- ONLY 2.2µF FOR STABILITY
- AVAILABLE IN ± 2% SELECTION AT 25 °C
- SUPPLY VOLTAGE REJECTION: 70 dB (TYP.)



DESCRIPTION

The L4987 is a very low drop regulator available in PPAK. The very low drop-voltage (0.5V Max at 200 mA) and the very low quiescent current make it particularly suitable for low noise, low power applications, and in battey powered systems. The input dump protection up to 40V makes it ideal for automotive applications. a shutdown Logic Control function is available (pin2, TTL compatible). This means that when the device is used as a local regulator, it is possible to put a

part of the boad in standby, decreasing the total power consumption. The regulator employs an output pin (open collector) providing a logic signal when the pass transistor is in saturation at low input voltage, this signal can be used to prevent the pop-up phenomenon in the car radio. In battery powered systems (the cellular phone, notebook) it is possible to use the flag to monitor the battery charge status through the dropout of the regulator.

SCHEMATIC DIAGRAM

October 1998 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	DC Input Voltage	40	V
Io	Output Current	Internally limited	mA
P _{tot}	Power Dissipation	Internally limited	mW
T _{stg}	Storage Temperature Range	- 40 to 150	°C
T _{op}	Operating Junction Temperature Range	- 40 to 125	°C

Absolute Maximum Rating are those values beyond wich damage to the device may occur. Functional operation under these conditions is not implied.

THERMAL DATA

Symbol	Parameter DPAK/PPAK			
R _{thj-case}	Thermal Resistance Junction-case	8	°C/W	
R _{thj-amb}	Thermal Resistance Junction-ambient	100	°C/W	

CONNECTION DIAGRAM (top view)

ORDERING NUMBERS

Туре	Output Voltage
L4987CPT30 (*)	3 V
L4987CPT50 (*)	5 V
L4987CPT87 (*)	8.7 V
L4987CPT120 (*)	12 V

(*) Available even in tape & reel

57

ELECTRICAL CHARACTERISTICS FOR L4987CPT30 (refer to the test circuits, V_I = 6 V,

lout = 5 mA, T_j = 25 °C, C_i = 0.1 μ F, C_o = 2.2 μ F unless otherwise specified)

Symbol	Parameter	Parameter Test Conditions Min. Typ		Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 200 \text{ mA}, \ V_i = 6 \text{ V}$	2.94	3	3.06	V
		$I_0 = 200 \text{ mA}, V_i = 6 \text{ V} -40 < T_J < 125 °C$	2.88		3.12	V
Vi	Operating Input Voltage	$I_0 = 200 \text{ mA}$	3.62		18	V
lout	Output Current Limit		250			Α
ΔVo	Line Regulation	$V_i = 4.3 \text{ to } 18 \text{ V}, I_o = 0.5 \text{ mA}$		2.4	14	mV
ΔVo	Load Regulation	$V_i = 4.1 V$ $I_o = 0.5 to 200 mA$		3	20	mV
I _d	Quiescent Current	ON MODE $V_i = 4.3 \text{ to } 18 \text{ V} I_o = 0 \text{ mA}$ $V_i = 4.3 \text{ to } 18 \text{ V} I_o = 200 \text{ mA}$		0.7 1.5	1 6	mA mA
		OFF MODE V _i = 12 V		90	180	μΑ
SVR	Supply Voltage Rejection	$\begin{split} I_0 &= 5 \text{ mA} V_i = 5.3 \text{ V} \pm 1 \text{V} \\ f &= 120 \text{ Hz} \\ f &= 1 \text{ KHz} \\ f &= 10 \text{ KHz} \end{split}$		80 75 60		dB dB dB
V _d	Dropout Voltage	$I_0 = 200 \text{ mA}$ $I_0 = 200 \text{ mA}$ $-40 < T_J < 125 °C$		0.25	0.5 0.7	V V
Vil	Control Input Logic Low	-40 < T _J < 125 °C			0.8	V
V _{ih}	Control Input Logic High	-40 < T _J < 125 °C	2			V
I _i	Control Input Current			10		μΑ
Co	Output Bypass Capacitance	ESR = 0.5 to 10 Ω I_0 = 0 to 200 mA $-40 < T_J < 125$ °C	2	10		μF
V _{fl}	Control Flag Output Low	V_i - V_o < V_{cesat} power, I_{fl} = 6 mA I_o = 200 mA			0.5	V
I _{fh}	Control Flag Output High Leakage Current	$V_i > 3.62 \text{V}$ $V_{oh} = 15 \text{V}$			10	μА

L4987 SERIES

ELECTRICAL CHARACTERISTICS FOR L4987CPT50 (refer to the test circuits, V_I = 8 V,

lout = 5mA, T_j = 25 o C, C_i = 0.1 μ F, C_o = 2.2 μ F unless otherwise specified)

Symbol	Parameter	Parameter Test Conditions Min.				Unit
Vo	Output Voltage	$I_0 = 200 \text{ mA}, \ V_i = 8 \text{ V}$	4.9	5	5.1	V
		$I_0 = 200 \text{ mA}, V_i = 8 \text{ V} -40 < T_J < 125 °C$	4.8		5.2	V
Vi	Operating Input Voltage	$I_0 = 200 \text{ mA}$	5.7		18	V
lout	Output Current Limit		250			Α
ΔVo	Line Regulation	$V_i = 6.3 \text{ to } 18 \text{ V}, I_o = 0.5 \text{ mA}$		3	20	mV
ΔVo	Load Regulation	$V_i = 3.6 \text{V}$ $I_o = 0.5 \text{to} 200 \text{mA}$		3	20	mV
I _d	Quiescent Current	ON MODE $V_i = 6.3 \text{ to } 18 \text{ V} I_o = 0 \text{ mA}$ $V_i = 6.3 \text{ to } 18 \text{ V} I_o = 200 \text{ mA}$		0.7 1.5	1 6	mA mA
		OFF MODE V _i = 12 V		90	180	μΑ
SVR	Supply Voltage Rejection	$\begin{split} I_0 &= 5 \text{ mA} V_i = 7.3 \text{ V} \pm 1 \text{V} \\ f &= 120 \text{ Hz} \\ f &= 1 \text{ KHz} \\ f &= 10 \text{ KHz} \end{split}$		76 71 58		dB dB dB
V _d	Dropout Voltage	I _o = 200 mA I _o = 200 mA -40 < T _J < 125 °C		0.3	0.5 0.7	V V
Vil	Control Input Logic Low	-40 < T _J < 125 °C			0.8	V
V _{ih}	Control Input Logic High	-40 < T _J < 125 °C	2			V
I _i	Control Input Current			10		μΑ
Co	Output Bypass Capacitance	ESR = 0.5 to 10 Ω I _o = 0 to 200 mA -40 < T _J < 125 °C	= 0 to 200 mA 2 10			μF
V _{fI}	Control Flag Output Low	V_i - V_o < V_{cesat} power, I_{fi} = 6 mA I_o = 200 mA			0.5	V
I _{fh}	Control Flag Output High Leakage Current	$V_i > 5.85 \text{V}$ $V_{oh} = 15 \text{V}$			10	μΑ

ELECTRICAL CHARACTERISTICS FOR L4987CPT87 (refer to the test circuits, $V_1 = 11.7V$,

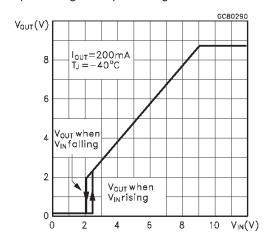
lout = 5mA, T_j = 25 o C, C_i = 0.1 μ F, C_o = 2.2 μ F unless otherwise specified)

Symbol	Parameter	Parameter Test Conditions Min.			Max.	Unit
Vo	Output Voltage	$I_0 = 200 \text{ mA}, V_i = 11.7 \text{ V}$	8.526	8.7	8.874	V
		$I_0 = 200 \text{ mA}, V_i = 11.7 \text{ V} -40 < T_J < 125 ^{\circ}\text{C}$	8.35		9.05	V
Vi	Operating Input Voltage	I _o = 200 mA	9.55		18	V
lout	Output Current Limit		250			Α
ΔVo	Line Regulation	$V_i = 10 \text{ to } 18 \text{ V}, I_o = 0.5 \text{ mA}$		4	24	mV
ΔVo	Load Regulation	$V_i = 10 \text{ V}$ $I_o = 0.5 \text{ to } 200 \text{ mA}$		3	20	mV
I _d	Quiescent Current	ON MODE $ V_i = 10 \text{ to } 18 \text{ V} I_o = 0 \text{ mA} $ $ V_i = 10 \text{ to } 18 \text{ V} I_o = 200 \text{ mA} $		0.5 3	1 6	mA mA
		OFF MODE V _i = 12 V		90	180	μΑ
SVR	Supply Voltage Rejection	$I_0 = 5 \text{ mA} V_i = 11 \text{ V} \pm 1 \text{V}$ f = 120 Hz f = 1 KHz f = 10 KHz		71 68 55		dB dB dB
V _d	Dropout Voltage	$I_0 = 200 \text{ mA}$ $I_0 = 200 \text{ mA}$ $-40 < T_J < 125 °C$		0.3	0.5 0.7	V V
Vil	Control Input Logic Low	-40 < T _J < 125 °C			0.8	V
V _{ih}	Control Input Logic High	-40 < T _J < 125 °C	2			V
I _i	Control Input Current			10		μΑ
Co	Output Bypass Capacitance	ESR = 0.5 to 10 Ω I _o = 0 to 200 mA -40 < T _J < 125 °C	2	10		μF
V _{fI}	Control Flag Output Low	V_i - V_o < V_{cesat} power, I_{fi} = 6 mA I_o = 200 mA			0.5	V
I _{fh}	Control Flag Output High Leakage Current	$V_i > 9.55 V$ $V_{oh} = 15 V$			10	μΑ

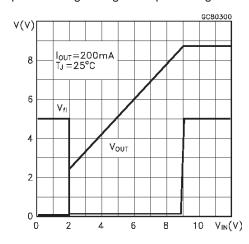
L4987 SERIES

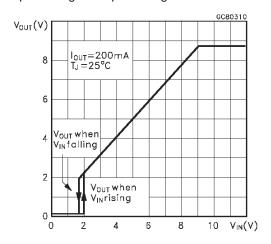
ELECTRICAL CHARACTERISTICS FOR L4987CPT120 (refer to the test circuits, V_I = 15V,

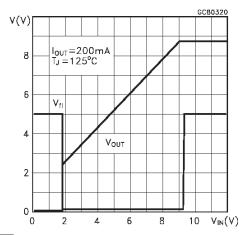
I_{OUT} = 5mA, T_j = 25 o C, C_i = 0.1 μ F, C_o = 2.2 μ F unless otherwise specified)

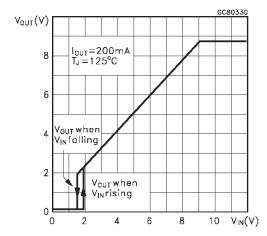

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 200 \text{ mA}, V_i = 15 \text{ V}$	11.76 12		8.874	V
		$I_0 = 200 \text{ mA}, V_i = 15 \text{ V} -40 < T_J < 125^{\circ}\text{C}$	11.52		9.05	V
Vi	Operating Input Voltage	$I_0 = 200 \text{ mA}$	12.75		18	V
lout	Output Current Limit		250			Α
ΔVo	Line Regulation	$V_i = 13.5 \text{ to } 18 \text{ V}, I_o = 0.5 \text{ mA}$		5	30	mV
ΔVo	Load Regulation	$V_i = 13.5 \text{V}$ $I_o = 0.5 \text{to} 200 \text{mA}$		3	20	mV
I _d	Quiescent Current	ON MODE $V_i = 13.5 \text{ to } 18 \text{ V} I_o = 0 \text{ mA}$ $V_i = 13.5 \text{ to } 18 \text{ V} I_o = 200 \text{ mA}$		0.5 3	1 6	mA mA
		OFF MODE V _i = 12 V		90	180	μΑ
SVR	Supply Voltage Rejection	$\begin{split} I_0 &= 5 \text{ mA} V_i = 14.5 \text{ V} \pm 1 \text{V} \\ f &= 120 \text{ Hz} \\ f &= 1 \text{ KHz} \\ f &= 10 \text{ KHz} \end{split}$		67 64 51		dB dB dB
V _d	Dropout Voltage	$I_0 = 200 \text{ mA}$ $I_0 = 200 \text{ mA}$ $-40 < T_J < 125 °C$		0.3	0.5 0.7	V V
Vil	Control Input Logic Low	-40 < T _J < 125 °C			0.8	V
V _{ih}	Control Input Logic High	-40 < T _J < 125 °C	2			V
l _i	Control Input Current			10		μΑ
Co	Output Bypass Capacitance	ESR = 0.5 to 10 Ω I _o = 0 to 200 mA -40 < T _J < 125 °C	2	10		μF
V _{fI}	Control Flag Output Low	V_i - V_o < V_{cesat} power, I_{fl} = 6 mA I_o = 200 mA			0.5	V
I _{fh}	Control Flag Output High Leakage Current	$V_i > 12.75 \text{ V}$ $V_{oh} = 15 \text{ V}$			10	μА

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $T_J=25^{\circ}C$, $C_{IN}=C_{OUT}=1\mu F$)


Output and Flag Voltage vs Input Voltage


Output Voltage vs Input Voltage


Output and Flag Voltage vs Input Voltage


Output Voltage vs Input Voltage

Output and Flag Voltage vs Input Voltage

Output Voltage vs Input Voltage

*5*77

APPLICATION HINT OF L4987CPT30 How to use the control flag

The flag produces a logic "low" whenever the output fall out out of regulation. An "out of regulation condition can result from:

- 1) Low Input Voltage (V_{IN} ≤ V_{OUT} + V_{DROP})
- 2) Curent Limiting
- 3) Thermal Limiting

Figure 1 to 2 show the typical behaviour of the output voltage and the control flag versus the input voltage and the temperatre. No hysteresis is implemented; so the response of V_{OUT} and V_{FLAG} are the same either when the V_{IN} ramps up or down.

The control flag is an open collector which requires an external pull-up resistor. This may be connected to the regulator output (Figure 3) or some other supply voltage (Figure 4).

Using the regulator output prevents an invalid "high" on the flag which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below about 2V (Figue 5).

Concerning the pull-up resistor its value must be properly chosen as suggested below. When "low" as it is possible to see in figure 6 the control flag voltage is:

VFLAG(LOW) = VCE = 0.5 = VSUPPLY - RPULL X IFL

 V_{SUPPLY} is chosen by design and, thus is known, while I_{FL} must be at maximum 10mA. Then

0.5V ≥ V_{SUPPLY} - R_{PULL} x 10mA

The minimum value of RPULL, is, so, determined by the following equation:

$$R_{PULL(min)} \ge V_{SUPPLY} - \frac{0.5}{10 \ mA}$$

Regarding the maximum value of R_{PULL} note that its value depends of the type of logic used (CMOS, TTL etc.), the transistor leackage current and the presence or not of a load on V_{FLAG}.

The following example shows how to determine the R_{PULL} max in the case of CMOS logic, no load and $10\mu A$ (for L4978 it is the maximum value of I_{FH}) of control flag leakage current.

Becaause of CMOS logic:

$$V_{FLAG(HIGH)} \ge \frac{2}{3} V_{SUPPLY}$$

But

$$V_{FLAG(HIGH)} = V_{SUPPLY} - R_{PULL} \ x \ I_{FH} \ge \frac{2}{3} \ V_{SUPPLY}$$

so, the maximum value is determined by the following equation:

$$R_{PULL(MAX)} \le \frac{\frac{1}{3}V_{SUPPLY}}{10 A}$$

Figure 1: Output and Flag Voltage vs Input

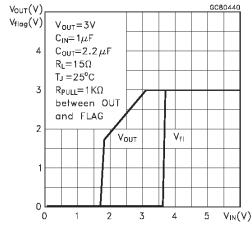


Figure 2: Flag Voltage vs Input

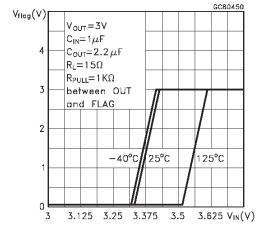


Figure 3: Test Circuit

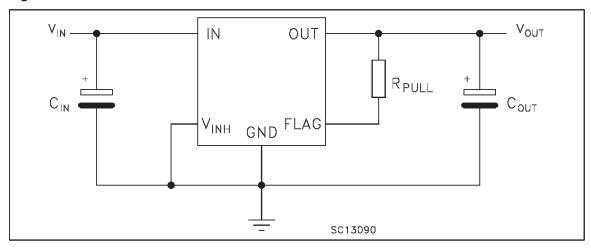


Figure 4: Test Circuit

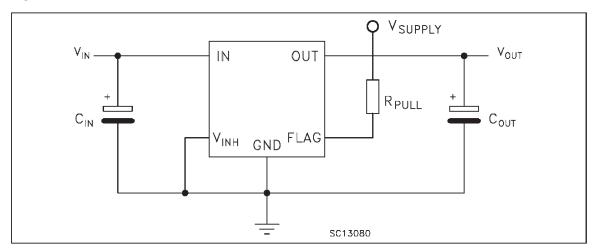


Figure 5: Output and Flag Voltage vs Input

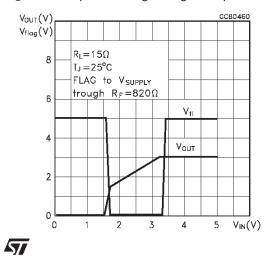
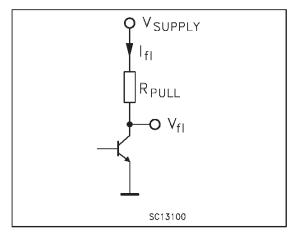
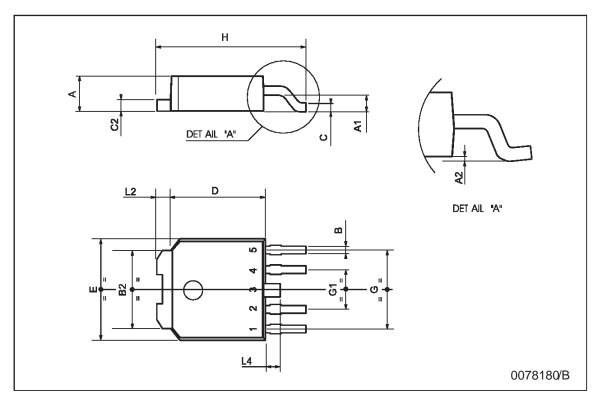




Figure 6: Equivalent Output Circuit

PPAK MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.4		0.6	0.015		0.023
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.9		5.25	0.193		0.206
G1	2.38		2.7	0.093		0.106
Н	9.35		10.1	0.368		0.397
L2		0.8	1		0.031	0.039
L4	0.6		1	0.023		0.039

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

