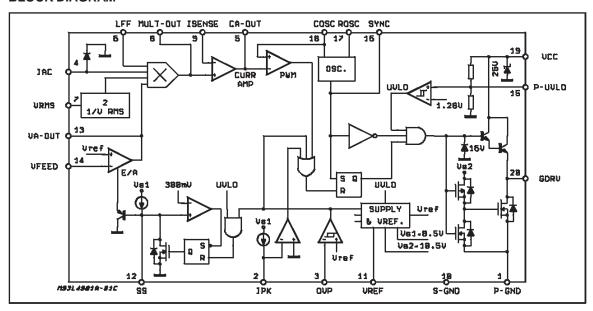

POWER FACTOR CORRECTOR

- CONTROL BOOST PWM UP TO 0.99P.F.
- LIMITLINE CURRENT DISTORTION TO < 5%
- UNIVERSAL INPUT MAINS
- FEED FORWARD LINE AND LOAD REGULA-TION
- AVERAGE CURRENT MODE PWM FOR MINIMUM NOISE SENSITIVITY
- HIGH CURRENT BIPOLAR AND DMOS TO-TEM POLE OUTPUT
- LOW START-UP CURRENT (0.3mA TYP.)
- UNDER VOLTAGE LOCKOUT WITH HYS-TERESIS AND PROGRAMMABLE TURN ON THRESHOLD
- OVERVOLTAGE, OVERCURRENT PROTEC-TION
- PRECISE 2% ON CHIP REFERENCE EX-TERNALLY AVAILABLE
- SOFT START

DESCRIPTION

The L4981 I.C. provides the necessary features to achieve a very high power factor up to 0.99. Realized in BCD 60II technology this power factor corrector (PFC) pre-regulator contains all the con-


MULTIPOWER BCD TECHNOLOGY

trol functions for designing a high efficiency-mode power supply with sinusoidal line current consumption.

The L4981 can be easily used in systems with mains voltages between 85V to 265V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in-

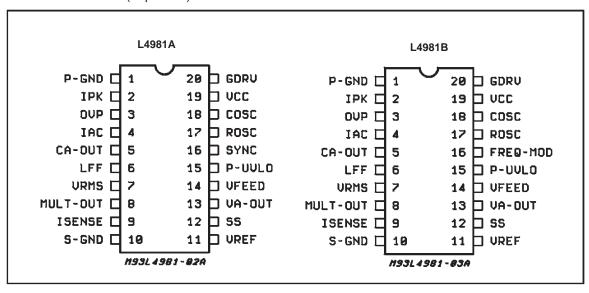
BLOCK DIAGRAM

September 1998 1/17

Downloaded from $\underline{Elcodis.com}$ electronic components distributor

put filter; both the operating frequency modes working with an average current mode PWM controller, maintaining sinusoidal line current without slope compensation.

Besides power MOSFET gate driver, precise voltage reference (externally available), error amplifier, undervoltage lockout, current sense and the


soft start are included. To limit the number of the external components, the device integrates protections as overvoltage and overcurrent. The overcurrent level can be programmed using a simple resistor for L4981A. For a better precision and for L4981B an external divider must be used.

ABSOLUTE MAXIMUM RATINGS

Symbol	Pin	Parameter	Value	Unit	
Vcc	19	Supply Voltage (lcc ≤50mA) (*)		selflimit	V
Igdrv	20	Gate driv. output peak current (t = 1μs)	SINK	2	A
			SOURCE	1.5	Α
Vgdrv		Gate driv. output voltage t = 0.1μs		-1	V
		Voltages at pins 3, 14, 7, 6, 12, 15		-0.3 to 9	V
Vva-out	13	Error Amplifier Voltage		-0.3 to 8.5	V
IAC	4	AC Input Current		5	mA
		Voltages at pin 8, 9		-0.5 to 7	V
Vca-out	5	Current Amplifier Volt. (Isource = -20mA; Isi	nk = 20mA)	-0.3 to 8.5	V
VROSC	17	Voltage at pin 17	-0.3 to 3	V	
	11, 18	Voltage at pin 11, 18		-0.3 to 7	V
Icosc	18	Input Sink Current		15	mA
IFREQ-MOD	16	Frequency Modulation Sink Current (L4981	B)	5	mA
Vsync	16	Sync. Voltage (L4981A)		-0.3 to 7	V
VIPK	2	Voltage at pin 2		-0.3 to 5.5	V
	-	Voltage at Pin 2 $t = 1 \mu s$	2)	-2	V
Ptot		Power Dissipation at T _{amb} = 70°C (DIP20	′	1	W
		Power Dissipation at $T_{amb} = 70^{\circ}C$ (SO20)))	0.6	W
T _{op}		Operating Ambient Temperature		-40 to 125	°C
T _{stg}		StorageTemperature		-55 to 150	°C

^(*) Maximum package power dissipation limits must be observed.

PIN CONNECTIONS (Top views)

THERMAL DATA

Symbol	Parameter	DIP 20	SO 20	Unit
Rth j-amb	Thermal Resistance Junction-ambient	80	120	°C/W

PIN FUNCTIONS

N.	Name	Description
1	P-GND	Power ground.
2	IPK	L4981A peak current limiting. A current limitation is obtained using a single resistor connected between Pin 2 and the sense resistor. To have a better precision another resistor between Pin 2 and a reference voltage (Pin 11) must be added.
		L4981B peak current limiting. A precise current limitation is obtained using two external resistor only. These resistors must be connected between the sense resistor, Pin 2 and the reference voltage.
3	OVP	Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage reference with a sample of the boost output voltage obtained via a resistive voltage divider in order to limit the maximum output peak voltage.
4	IAC	Input for the AC current. An input current proportional to the rectified mains voltage generates, via a multiplier, the current reference for the current amplifier.
5	CA-OUT	Current amplifier output. An external RC network determinates the loop gain.
6	LFF	Load feedforward; this voltage input pin allows to modify the multiplier output current proportionally to the load, in order to give a faster response versus load transient. The best control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin to the voltage reference (pin = 11).
7	VRMS	Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes. Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional to the input line RMS voltage is obtained. The best control is reached using input voltage between 1.5V and 5.5V. If this function is not used connect this pin to the voltage reference (pin = 11).
8	MULT-OUT	Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is an high impedence input like I _{SENSE} . The MULT-OUT pin must be taken not below -0.5V.
9	ISENSE	Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5V.
10	S-GND	Signal ground.
11	VREF	Output reference voltage (typ = $5.1V$). Voltage refence at $\pm 2\%$ of accuracy externally available, it's internally current limited and can deliver an output current up to 10mA .
12	SS	A capacitor connected to ground defines the soft start time. An internal current generator delivering 100μA (typ) charges the external capacitor defining the soft start time constant. An internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO conditions.
13	VA-OUT	Error amplifier output, an RC network fixes the voltage loop gain characteristics.
14	VFEED	Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to the boost output voltage.
15	P-UVLO	Programmable under voltage lock out threshold input. A voltage divider between supply voltage and GND can be connected in order to program the turn on threshold.
16	SYNC (L4981A)	This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock pulse train is available to synchronize other devices.
	FREQ-MOD (L4981B)	Frequency modulation current input. An external resistor must be connected between pin 16 and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to ground a fixed frequency imposed by R _{OSC} and C _{OSC} is obtained.
17	Rosc	An external resistor connected to ground fixes the constant charging current of C _{OSC} .
18	Cosc	An external capacitor connected to GND fixes the switching frequency.
19	V _{CC}	Supply input voltage.
20	GDRV	Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak current in excess 1A useful to drive MOSFET or IGBT power stages.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified V_{CC} = 18V, C_{OSC} = 1nF, R_{OSC} = 24KΩ, C_{SS} = 1μF, V_{CA-OUT} = 3.5V, V_{ISENSE} = 0V, V_{LFF} = V_{REF}, I_{AC} = 100μA, V_{RMS} = 1V, V_{FEED} = GND, V_{IPK} = 1V, V_{OVP} = 1V, T_J = 25°C

Symbol	Prameter	Test Condition	Min.	Тур.	Max.	Unit
ERROR AN	IPLIFIER SECTION					
V_{IO}	Input Offset Voltage	–25°C < T _J < 85°C			±8	mV
I_{IB}	Input Bias Current	V _{FEED} = 0V	-500	-50	500	nA
	Open Loop Gain		70	100		dB
V _{13H}	Output High voltage	$V_{\text{FEED}} = 4.7V$ $I_{\text{VA-OUT}} = -0.5\text{mA}$	5.5	6.5	7.5	V
V _{13L}	Output Low Voltage	$V_{\text{FEED}} = 5.5V$ $I_{\text{VA-OUT}} = 0.5\text{mA}$		0.4	1	V
-l ₁₃	Output Source Current	$V_{FEED} = 4.7V; V_{VA-OUT} = 3.5V$	2	10		mA
I ₁₃	Output Sink Current	$V_{FEED} = 5.5V$; $V_{VA-OUT} = 3.5V$	4	20		mA
REFERENC	CE SECTION					
V _{ref}	Reference Output Voltage	–25°C < T _J < 85°C	4.97	5.1	5.23	V
		$T_{j} = 25^{\circ}C I_{ref} = 0$	5.01	5.1	5.19	V
ΔV_{ref}	Load Regulation	$ 1mA \leq I_{ref} \leq 10mA \\ -25^{\circ}C < T_{J} < 85^{\circ}C $		3	15	mV
ΔV_{ref}	Line Regulation	12V ≤ V _{CC} ≤ 19V -25°C < T _J < 85°C		3	10	mV
I _{ref sc}	Short Circuit Current	V _{ref} = 0V	20	30	50	mA
OSCILLAT	OR SECTION					
f _{osc}	Initial Accuracy	T _i = 25°C	85	100	115	KHz
	Frequency Stability	12V ≤ V _{CC} ≤ 19V -25°C < T _J < 85°C	80	100	120	KHz
V _{svp}	Ramp Valley to Peak		4.7	5	5.3	V
I _{18C}	Charge Current	$V_{COSC} = 3.5V$	0.45	0.55	0.65	mA
I _{18D}	Discharge Current	$V_{COSC} = 3.5V$		11.5		mA
V ₁₈	Ramp Valley Voltage		0.9	1.15	1.4	V
SYNC SEC	TION (Only for L4981A)	•			•	
t _W	Output Pulse Width	50% Amplitude	0.3	0.8		μs
I ₁₆	Sink Current with Low Output Voltage	$V_{SYNC} = 0.4V$ $V_{COSC} = 0V$	0.4	0.8		mA
-l ₁₆	Source Current with High Output Voltage	$V_{SYNC} = 4.5V$ $V_{COSC} = 6.7V$	1	6		mA
V _{16L}	Low Input Voltage				0.9	V
V _{16H}	High Input Voltage		3.5			V
td	Pulse for Synchronization		800			ns
FREQUENC	CY MODULATION FUNCTION (Only	for L4981B)				
f _{18max}	Maximum Oscillation Frequency	V _{FREQ-MOD} = 0V (Pin 16) I _{freq} = 0	85	100	115	KHz
f _{18min}	Minimum Oscillator Frequency	$I_{FREQ-MOD} = 360\mu A \text{ (Pin 16)}$ $V_{VRMS} = 4V \text{ (Pin 7)}$		74		KHz
		$I_{FREQ-MOD} = 180\mu A \text{ (Pin 16)}$ $V_{VRMS} = 2V \text{ (Pin 7)}$		76		KHz
SOFT STAI	RT SECTION					
I _{SS}	Soft Start Source Current	V _{SS} = 3V	60	100	140	μΑ
V _{12sat}	Output Saturation Voltage	$V_3 = 6V$, $I_{SS} = 2mA$		0.1	0.25	V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY V	OLTAGE					
V _{CC}	Operating Supply Voltage				19.5	V
OVER VOL	TAGE PROTECTION COMPARATO	R				
V_{thr}	Rising Threshold Voltage		V _{ref} -20mV	5.1	V _{ref} +20mV	٧
V _{3Hys}	Hysteresis		180	250	320	mV
l ₃	Input Bias Current			0.05	1	μΑ
t _d	Propagation delay to output	$V_{OVP} = V_{thr} + 100 \text{mV}$		1	2	μS
OVER CUP	RRENT PROTECTION COMPARATO	R				
V_{th}	Threshold Voltage				±30	mV
t _d	Propagation delay to Output	$V_{OCP} = V_{thr} - 0.2V$		0.4	0.9	μs
l _{ipk}	Current Source Generator	V _{IPK} = -0.1V only for L4981A	65	85	105	μΑ
Íι	Leakage Current	V _{IPK} = -0.1V only for L4981B			5	μА
CURRENT	AMPLIFIER SECTION					
V _{offset}	Input Offset Voltage	V _{MULT} OUT = V _{SENSE} = 3.5V			<u>+2</u>	mV
I _{9bias}	Input Bias Current	V _{SENSE} = 0V	-500	50	500	nA
	Open Loop Gain	1.1V ≤ V _{CA OUT} ≤ 6V	70	100		dB
SVR	Supply Voltage Rejection	12V ≤ V _{CC} ≤ 19V V _{MULT OUT} = 3.5V V _{SENSE} = 3.5V	68	90		dB
V_{5H}	Output High Voltage	V _{MULT OUT} = 200mV I _{CA OUT} = -0.5mA, V _{IAC} = 0V	6.2			V
V_{5L}	Output Low Voltage	V _{MULT OUT} = -200mV I _{CA OUT} = 0.5mA, V _{IAC} = 0V			0.9	V
-l ₅	Output Source Current	$V_{MULTOUT} = 200 mV$,	2	10		mA
l ₅	Output Sink Current	$V_{IAC} = 0V$, $V_{CA-OUT} = 3.5V$	2	10		mA
OUTPUT S	SECTION					
V _{20L}	Output Voltage Low	I _{SINK} = 250mA		0.5	0.8	V
V _{20H}	Output Voltage High	$I_{SOURCE} = 250 \text{mA}$ $V_{CC} = 15 \text{V}$	11.5	12.5		V
t _r	Output Voltage Rise Time	C _{OUT} = 1nF		50	150	ns
t _f	Output Voltage Fall Time	C _{OUT} = 1nF		30	100	ns
V _{GDRV}	Voltage Clamp	Isource = 0mA	13	16	19	V
TOTAL ST	ANDBY CURRENT SECTION					
I _{19start}	Supply Current before start up	V _{CC} = 14V		0.3	0.5	mA
I _{19on}	Supply Current after turn on	V _{IAC} = 0V, V _{COSC} = 0, Pin17 = Open		8	12	mA
I ₁₉	Operating Supply Current	Pin20 = 1nF		12	16	mA
Vcc	Zener Voltage	(*)	20	25	30	V
	OLTAGE LOCKOUT SECTION			-		
V _{th ON}	Turn on Threshold		14.5	15.5	16.5	V
V _{th OFF}	Turn off Threshold		9	10	11	V
	Programmable Turn-on Threshold	Pin 15 to V _{CC} = 220K Pin15 to GND = 33K	10.6	12	13.4	V
LOAD FEE	D FORWARD					
I _{LFF}	Bias Current	V ₆ = 1.6V		70	140	μΑ
		V ₆ = 5.3V		200	300	μΑ
Vı	Input Voltage Range		1.6		5.3	V

^(*) Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Prameter	Test Condition	Min.	Тур.	Max.	Unit
MULTIPLIE	R SECTION					
	Multipler Output Current	$ \begin{aligned} &V_{VA\text{-}OUT} = 4V, \ V_{RMS} = 2V, \\ &V_{MULTOUT} = 0, \ V_{LFF} = 5.1V \\ &I_{AC} = 50\mu\text{A}, \ Cosc = 0V \end{aligned} $	20	35	52	μΑ
		$ \begin{array}{l} V_{VA\text{-}OUT} = 4V, \ V_{RMS} = 2V, \\ V_{MULTOUT} = 0, \ V_{LFF} = 5.1V \\ I_{AC} = 200\mu A, \ Cosc = 0V \end{array} $	100	135	170	μА
		$ \begin{aligned} &V_{VA\text{-}OUT} = 2V, \ V_{RMS} = 2V, \\ &V_{MULTOUT} = 0, \ V_{LFF} = 5.1V \\ &I_{AC} = 100\mu A, \ Cosc = 0V \end{aligned} $	10	20	30	μА
		$ \begin{aligned} &V_{VA\text{-}OUT} = 2V, V_{RMS} = 4V, \\ &V_{MULTOUT} = 0, V_{LFF} = 5.1V \\ &I_{AC} = 100\mu A, Cosc = 0V \end{aligned} $	2	5.5	11	μΑ
		$ \begin{aligned} &V_{VA\text{-}OUT} = 4V, \ V_{RMS} = 4V, \\ &V_{MULTOUT} = 0, \ V_{LFF} = 5.1V \\ &I_{AC} = 100\mu A, \ Cosc = 0V \end{aligned} $	10	22	34	μΑ
		$ \begin{aligned} &V_{VA\text{-}OUT} = 4V, \ V_{RMS} = 2V, \\ &V_{MULTOUT} = 0, \ V_{LFF} = 2.5V \\ &Cosc = 0V, \ I_{AC} = 200\mu A \end{aligned} $	20	37	54	μΑ
		$V_{VA-OUT} = 4V, V_{RMS} = 4V \ V_{MULTOUT} = 0, V_{LFF} = 5.1V \ I_{AC} = 200 \mu A, Cosc = 0V$	20	39	54	μΑ
		V _{VA-OUT} = 2V, V _{RMS} = 4V, V _{MULTOUT} = 0, V _{LFF} = 5.1V I _{AC} = 0, Cosc = 0V	-2	0	2	μΑ
K	Multiplier Gain			0.37		

$$I_{MULT-OUT} = K \cdot I_{AC} \frac{(V_{VA-OUT} - 1.28) \cdot (0.8 \cdot V_{LFF} - 1.28)}{\left(V_{VRMS}\right)^2}$$

$$if \ \ VLFF = VREF; \quad I_{MULT-OUT} = I_{AC} \frac{(V_{VA}-OUT-1.28)}{\left(VVRMS\right)^2} \cdot \ K1$$

where: K1 = 1V

Figure 1: MULTI-OUT vs. I_{AC} (V_{RMS} = 1.7V;

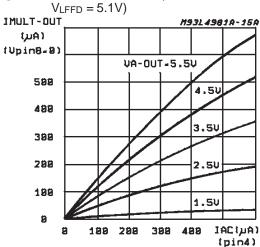


Figure 2: MULTI-OUT vs. I_{AC} ($V_{RMS} = 2.2V$; $V_{LFFD} = 5.1V$)

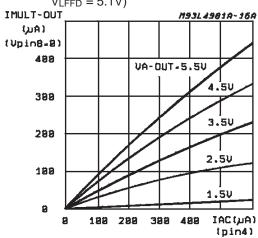


Figure 3: MULTI-OUT vs. I_{AC} ($V_{RMS} = 4.4V$; $V_{LFFD} = 5.1V$)

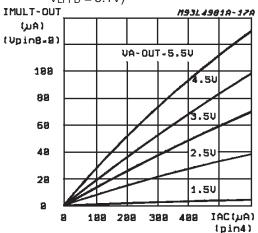


Figure 5: MULTI-OUT vs. I_{AC} ($V_{RMS} = 1.7V$; $V_{LFFD} = 2.5V$)

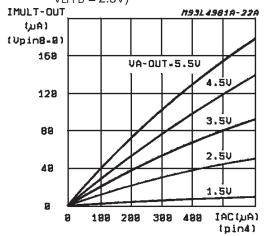


Figure 7: MULTI-OUT vs. I_{AC} ($V_{RMS} = 4.4V$; $V_{LFFD} = 2.5V$)

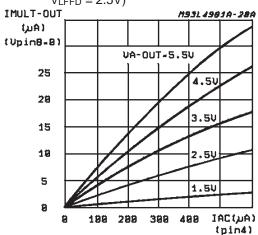


Figure 4: MULTI-OUT vs. I_{AC} (V_{RMS} = 5.3V; V_{LFFD} = 5.1V)

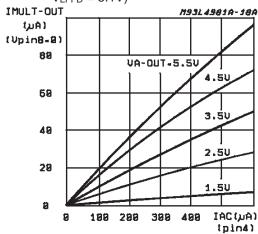


Figure 6: MULTI-OUT vs. I_{AC} ($V_{RMS} = 2.2V$; $V_{LFFD} = 2.5V$)

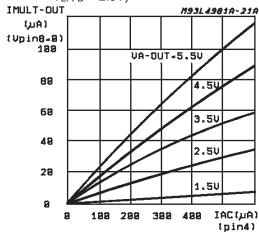
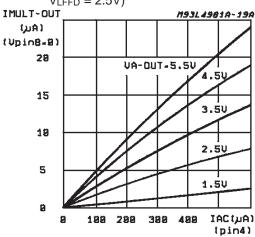



Figure 8: MULTI-OUT vs. I_{AC} ($V_{RMS} = 5.3V$; $V_{LFFD} = 2.5V$)

FUSE BRIDGE R7 R14 R15 D3 C5 C9 R17 R2 R10 D5 R17 R2 R10 D5 R17 R2 R10

Figure 9A: L4981A Power Factor Corrector (200W)

PART LIST

R_S	0.07(3 x .22)	1/2W	5%				
R1	820kΩ	1/4W	1%				
R2	10kΩ	1/4W	1%				
R3	1.8kΩ	1/4W	5%				
R4	1.8kΩ	1/4W	5%				
R5	18kΩ	1/4W	5%				
R6	1.2MΩ	1/4W	5%				
R7	360kΩ	1/4W	5%				
R8	33kΩ	1/4W	5%				
R9	1.8MΩ	1/4W	1%				
R10	21kΩ	1/4W	1%				
R11	402Ω	1/4W	1%				
R12	120kΩ	1/4W	5%				
R13	27Ω	1/4W	5%				
R14	1ΜΩ	1/4W	1%				
R15	120kΩ	1/2W	5%				
R16	30kΩ	1/4W	5%				
R17	1.8kΩ	4W	1%				
R21 5.1kΩ		1/4W	1%				
BRIDGE = 4 x P600M							

C1	470nF	400V				
C2	100μF	450V				
C3	2.2nF					
C4	1nF					
C5	100μF	25V				
C6	1μF	16V				
C 7	220nF	63V				
C8	220nF	63V				
C9	330nF					
C10	1μF	16V				
C11	270pF	400V				
C12	8.2nF	100V				
D1	STTA506D					
D2, D3	1N4148					
D4	18V	1/2W				
D5	BYT11-600					
MOS	STH/STW15NA50					
	FUSE = 4A/250V					

T= primary: 88 turns of 12 x 32 AWG (0.2mm) secondary: 9 turns of # 27AWG (0.15mm) core: B1ET3411A THOMSON - CSF gap: 1,6mm for a total primary inductance of 0.9mH

 $\begin{array}{l} f_{SW} = 80 kHz & P_O = 200W \\ V_{OUT} = 400V & I_{rms\;max} = 2.53A \\ V_{OVP} = 442V & I_{PK\;max} = 6.2A \end{array}$

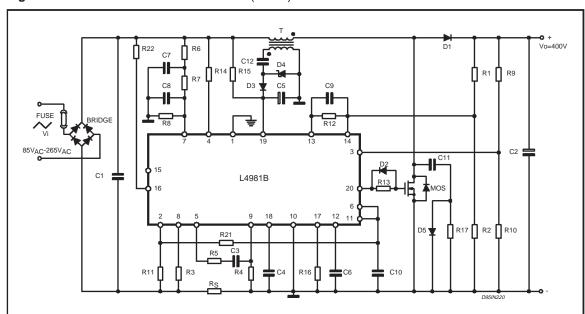


Figure 9B: L4981B Power Factor Corrector (200W)

PART LIST

R _S	0.07(3 x .22)	1/2W	5%				
R1	820kΩ	1/4W	1%				
R2	10kΩ	1/4W	1%				
R3	1.8kΩ	1/4W	5%				
R4	1.8kΩ	1/4W	5%				
R5	18kΩ	1/4W	5%				
R6	1.2MΩ	1/4W	5%				
R7	360kΩ	1/4W	5%				
R8	33kΩ	1/4W	5%				
R9	1.8ΜΩ	1/4W	1%				
R10	21kΩ	1/4W	1%				
R11	402Ω	1/4W	1%				
R12	120kΩ	1/4W	5%				
R13	27Ω	1/4W	5%				
R14	1ΜΩ	1/4W	1%				
R15	120kΩ	1/2W	5%				
R16	24kΩ	1/4W	5%				
R17	1.8kΩ	4W	1%				
R21	5.1kΩ	1/4W	1%				
R22	1.1ΜΩ	1/4W	1%				
BRIDGE = 4 x P600M							

C1	470nF	400V			
C2	100μF	450V			
C3	2.2nF				
C4	1.1nF				
C5	100μF	25V			
C6	1μF	16V			
C7	220nF	63V			
C8	220nF	63V			
C9	330nF				
C10	1μF	16V			
C11	270pF	400V			
C12	8.2nF	100V			
D1	STTA506D				
D2, D3	1N4148				
D4	18V	1/2W			
D5	BYT11-600				
MOS	STH/STW15NA50				
FUSE = 4A/250V					

T= primary: 88 turns of 12 x 32 AWG (0.2mm) secondary: 9 turns of # 27AWG (0.15mm) core: B1ET3411A THOMSON - CSF gap: 1,6mm for a total primary inductance of 0.9mH

$$\begin{array}{l} f_{SW} = 80 \ to \ 92 kHz \ P_O = 200W \\ V_{OUT} = 400V \ I_{rms \ max} = 2.53A \\ V_{OVP} = 442V \ I_{PK \ max} = 6.2A \end{array}$$

Figure 10: Reference Voltage vs. Source Reference Current

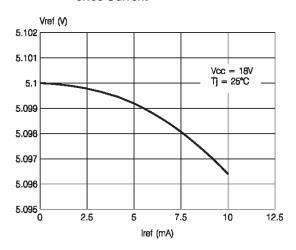


Figure 12: Reference Voltage vs. Junction Temperature

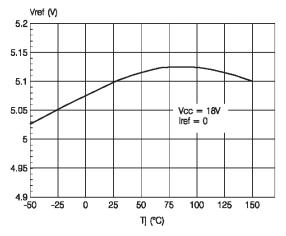


Figure 14: Gate Driver Rise and Fall Time

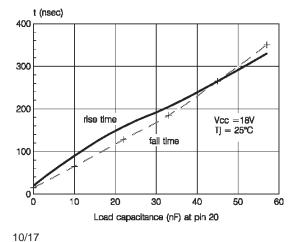
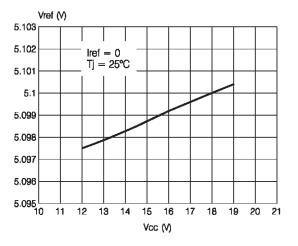



Figure 11: Reference Voltage vs. Supply Voltage

Figure 13: Switching Frequency vs. Junction Temperature

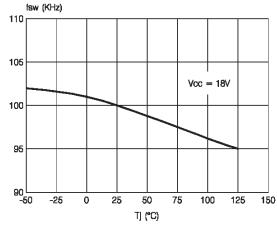


Figure 15: Operating Supply Current vs. Supply Voltage

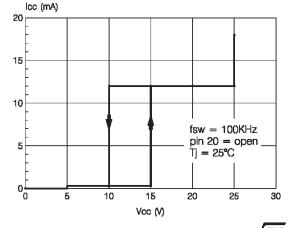


Figure 16: Programmable Under Voltage Lockout Thresholds

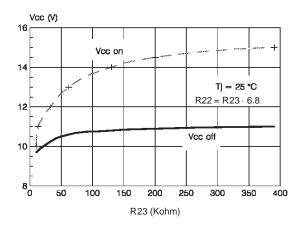


Figure 17: Modulation Frequency Normalized in an Half Cycle of the Mains Voltage

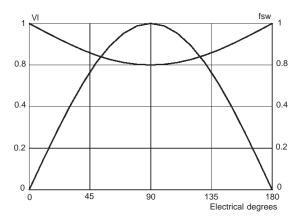


 Table 1:
 Programmable Under Voltage Lockout Thresholds.

V _{CC ON}	V CC OFF	R22	R23
11V	10V	82kΩ	12kΩ
12V	10.1V	220kΩ	33kΩ
13V	10.5V	430kΩ	62kΩ
14V	10.8V	909kΩ	133kΩ
14.5V	10.9V	1.36ΜΩ	200kΩ
15V	11V	2.7ΜΩ	390kΩ

Figure 18: Oscillator Diagram

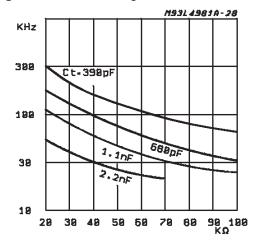
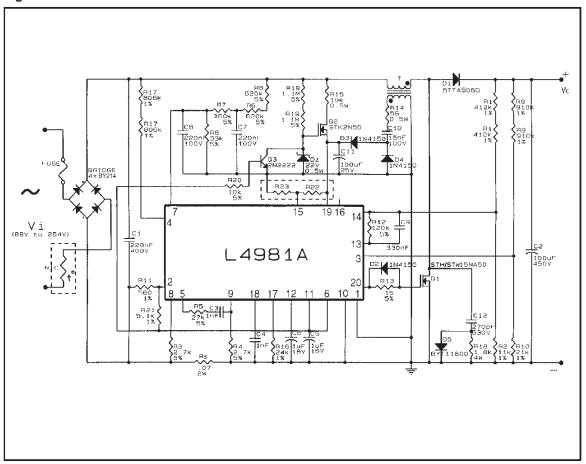



Figure 19: 200W Evaluation Board Circuit.

T= primary: 75 turns of litz wire 20 x 32 AWG (0.2mm)

secondary: 8 turns of # 27AWG (0.15mm) core: B1ET3411A THOMSON - CSF

gap: 1.4mm for a total primary inductance of 0.7mH

 $f_{sw} = 100kHz; V_O = 400V; P_O = 200W$

NOTE:

Start Up Circuit

Usually the Vcc capacitor (C11 in fig. 19) can be charged by a resistor drawing current from the rectified mains. In the evaluation board instead the start up circuit composed by (Q2+R19+R15+Dz) has been designed to perform a fast and effective supply in all the conditions. Once that the L4981A/B has started, the reference

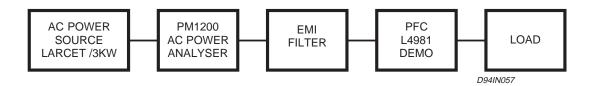
voltage available at pin 6 by R20 and Q3, ensures Q2 to be turned off.

Programmable Under voltage Lockout

The PCB allows to insert a couple of resistor (R22, R23) to modify the threshold input voltage. Please refer to fig. 16 and table1.

+ TUO 30 | - 60 - ZO -- E3 612 18 84 BB DIN Fuee 5x20 AC MAIN ST L4981

Figure 20: P.C. Board and Component Layout of Evaluation Board Circuit (1:1 scale).

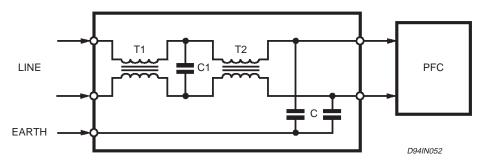

The evaluation board has been designed using: a faster not dissipative start-up circuit, a diode (D2) to speed-up the MOS start-off time and (even if a single resistor can be used) an external divider to improve the precision of the overcurrent threshold.

Further there is a possibility to change the input threshold voltage using an external divider (R23 and R22) and if an inrush current problem arises a NTC resistor can be used.

The PFC demoboard performances has been evaluated testing the following parameters:

PF (power factor), A-THD (percentage of current total harmonic distortion), H3..H9 (percentage of current's n^{th} harmonic amplitude), ΔV_o (output voltage ripple), V_o (output voltage), η (efficiency).

The test configuration, equipments and results are:

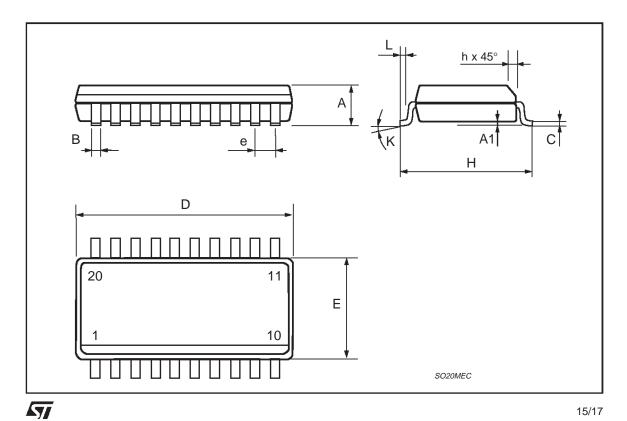


Vi	f	Pi	PF	A-THD	Н3	H5	H7	Н9	V O	Δ V O	РО	η
(V _{rms})	(Hz)	(W)		(%)	(%)	(%)	(%)	(%)	(V)	(V)	(W)	(%)
88	60	222	0.999	2.94	1.98	0.61	0.55	0.70	390	8	200	90.2
110	60	220	0.999	1.79	1.40	0.40	0.31	0.28	392	8	201	91.6
132	60	218	0.999	1.71	1.16	0.40	0.35	0.31	394	8	202	92.8
180	50	217	0.999	1.88	1.52	0.65	0.40	0.34	396	8	203	93.8
220	50	217	0.997	2.25	1.68	0.83	0.57	0.48	398	8	204	94.2
260	50	216	0.995	3.30	1.84	1.30	0.39	0.73	400	8	205	95.2

EMI/RFI FILTER

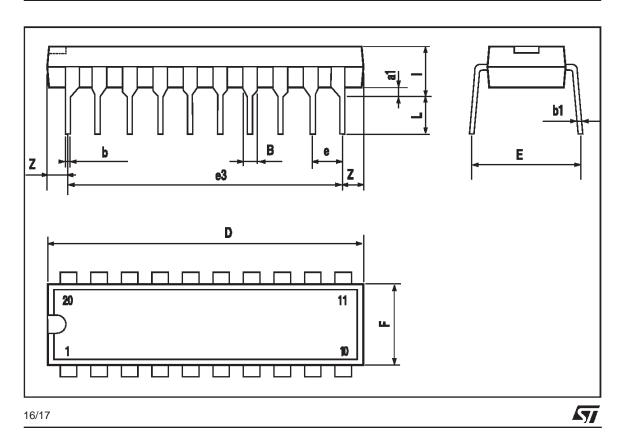
The harmonic content measurement has been done using an EMI/RFI filter interposed between

the AC source and the demoboard under test, while the efficiency has been calculated without the filter contribution.



where:

T1 = 1mH C1 = $0.33\mu F$, 630V T2 = 27mH C2 = 2.2nF, 630V


SO20 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.35		2.65	0.093		0.104	
A1	0.1		0.3	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	12.6		13	0.496		0.512	
E	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
К	0 (min.)8 (max.)						

DIP20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

