SIEMENS

3-A DC Motor Driver

TLE 5204

Overview SPT IC ${ }^{1)}$

Features

- Output current $\pm 3 \mathrm{~A}$
- I/O error diagnostics
- Short-circuit proof
- Four-quadrant operation
- Integrated free-wheeling diodes
- Wide temperature range
- Break low and break high, if open load detection is required, the device TLE 5203 will fit

P-TO220-7-1

P-TO220-7-8

Type	Ordering Code	Package
TLE 5204	Q67000-A9177	P-TO220-7-1
TLE 5204 G	Q67006-A9234	P-TO220-7-8

Description

TLE 5204 is an integrated power bridge with DMOS output stages for driving DC motors.
This motor bridge is optimized for driving DC motors in reversible operation. The internal protective circuitry in particular ensures that no crossover currents can occur.
Because the free-wheeling diodes are integrated, the external circuitry that is necessary is reduced to the capacitors on the supply voltage.
The control inputs have TTL/CMOS-compatible levels.

${ }^{1)}$ SIEMENS Power Technology

Figure 1 Pin Configuration (top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	Q1	Output of channel 1; Short-circuit proof, free-wheeling diodes integrated for inductive loads
2	EF	Error flag; TTL/CMOS-compatible output for error detection (open drain)
3	I1	Control input 1; TTL/CMOS-compatible
4	GND	Ground; connected internally to cooling fin
5	I2	Control input 2; TTL/CMOS-compatible
6	V_{S}	Supply voltage; wire with capacitor matching load
7	Q2	Output of channel 2; Short-circuit proof, free-wheeling diodes integrated for inductive loads

Circuit Description

Input Circuit

The control inputs consist of TTL/CMOS-compatible Schmitt triggers with hysteresis. Buffer amplifiers are driven by these stages and convert the logic signal into the necessary form for driving the power output stages.

Output Stages

The output stages form a switched H-bridge. Protective circuits make the outputs shortcircuit proof to ground and to the supply voltage throughout the operating range. Positive and negative voltage spikes, which occur when switching inductive loads, are clamped by integrated power diodes.

Functional Truth Table

E1	E2	Q1	Q2	Comments
L	L	L	L	Motor brake; both low side transistors turned-ON
L	H	L	H	Motor turns clockwise
H	L	H	L	Motor turns counterclockwise
H	H	H	H	Motor brake; both high side transistors turned-ON

Notes for Output Stage

Symbol	Value
L	Low side transistor is turned-ON High side transistor is turned-OFF
H	High side transistor is turned-ON Low side transistor is turned-OFF

Monitoring Functions

An internal circuit ensures that all output transistors are turned-OFF if the supply voltage is below the operating range.
A monitoring circuit for each output transistor detects whether the particular transistor is active and in this case prevents the corresponding source transistor (sink transistor) from conducting in sink operation (source operation). Therefore no crossover currents can occur. Pulse-width operation is possible up to a maximum switching frequency of 1 kHz for any load.
Depending on the load current higher frequencies are possible.

Protective Function

Various errors like short-circuit to $+V_{\mathrm{s}}$, ground or across the load are detected. All faults result in turn-OFF of the output stages after a delay of $40 \mu \mathrm{~s}$ and setting of the error flag EF to ground. Changing the inputs resets the error flag.

Output Shorted to Ground Detection

If a high side transistor is switched on and its output is shorted to ground, the output current is limited to typ 8 A. After a delay of $40 \mu \mathrm{~s}$ all outputs will be switched off and the error flag EF is set to ground.

Output Shorted to $+V_{\mathrm{s}}$ and Overload Detection

An internal circuit detects if the current through the low side transistor is higher than 4 A typ. In this case all outputs are turned-OFF after 40μ s and the error flag is set to ground.
At a junction temperature higher than $160^{\circ} \mathrm{C}$ the thermal shutdown turns-OFF, all four output stages commonly and the error flag is set without a delay.

Diagnosis

Input		Output		Diagnosis			EF
E1	E2	Q1	Q2	Shorted to GND	Shorted to $\boldsymbol{V}_{\text {s }}$	Overload	
L	L	L	L	-	Q1, Q2	-	L
L	H	L	H	Q2	Q1	X	L
H	L	H	L	Q1	Q2	X	L
H	H	H	H	Q1, Q2	-	-	L

\qquad

Figure 2 Block Diagram

Absolute Maximum Ratings

$T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltage

Supply voltage	V_{S}	-0.3	40	V	-
Supply voltage	V_{S}	-1	-	V	$t<500 \mathrm{~ms} ; I_{\mathrm{S}}<5 \mathrm{~A}$
Logic input voltage	$V_{\mathrm{H}, 2}$	-0.3	7	V	$V_{\mathrm{S}}=0-40 \mathrm{~V}$
Diagnostics output voltage	V_{EF}	-0.3	7	V	-

Current

Free-wheeling current	I_{F}	-4	4	A	$T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$
Output current ${ }^{1)}$	I_{O}	-4	4	A	-
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	-

Thermal Resistance

Junction-case	R_{tric}	-	4	K/W	-
Junction-ambient	$R_{\mathrm{trj} \mathrm{A}}$	-	65	K/W	-

Operating Range

1) During overload condition currents higher than 4 A can dynamically occur, before the device shuts off, without
2) any damaging the device.
3) Depending on load higher frequencies are possible.

Electrical Characteristics

$V_{\mathrm{s}}=6$ to $18 \mathrm{~V} ; T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

General

Quiescent current	$I_{\text {q }}$	-	-	10	mA	$I_{\text {L }}=0 \mathrm{~A}$
Turn-ON delay	$t_{\text {d1 }}$	-	10	20	$\mu \mathrm{s}$	Input to output
Turn-OFF delay	$t_{\text {d2 }}$	-	-	10	$\mu \mathrm{s}$	Input to output
Turn-ON time	$t_{\text {r }}$	-	10	20	$\mu \mathrm{s}$	$I_{\mathrm{Q}}=2.5 \mathrm{~A} ;$ cf diagram
Turn-OFF time	$t_{\text {f }}$	-	-	10	$\mu \mathrm{S}$	$I_{\mathrm{Q}}=2.5 \mathrm{~A} ;$ cf diagram
Undervoltage	$V_{\text {s }}$	-	5.5	5.9	V	$I_{\text {c on }}$
Undervoltage	$V_{\text {s }}$	-	4.5	5.2	V	$I_{\text {c off }}$

Logic

Control inputs H-input voltage L-input voltage	$\begin{aligned} & V_{\mathrm{H}} \\ & V_{\mathrm{t}} \end{aligned}$	$\begin{aligned} & 2.8 \\ & -2 \end{aligned}$		$\overline{-}$	$\left\lvert\, \begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}\right.$	$-$
Hysteresis of input voltage	ΔV_{1}	0.4	0.8	1.2	V	-
H-input current L-input current	$\begin{aligned} & \hline I_{1} \\ & I_{1} \end{aligned}$	$\begin{aligned} & \hline-2 \\ & -10 \end{aligned}$	-4	$\begin{array}{\|l\|} 2 \\ 0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{1}=V_{\mathrm{IH}} \\ & V_{1}=V_{\mathrm{IL}} \end{aligned}$
Diagnosis output Delay time L-output voltage Leakage current	$\begin{aligned} & t_{\mathrm{d}} \\ & V_{\mathrm{EF}} \\ & I_{\mathrm{RD}} \\ & \hline \end{aligned}$	20	$\begin{aligned} & 40 \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 60 \\ 0.4 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \end{aligned}$	$I=3 \mathrm{~mA}$
Error detection Switching threshold U Switching threshold L Overcurrent 1	$\begin{aligned} & V_{\mathrm{EH}} \\ & V_{\mathrm{EL}} \\ & I_{\mathrm{F} 1} \end{aligned}$	$\begin{array}{\|l\|l} 2 \\ 2 \\ 3 \end{array}$	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 4 \end{aligned}$	$\begin{array}{\|l} 3.5 \\ 3.5 \\ 5 \end{array}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~A} \end{array}$	Error low Error high Error low

Electrical Characteristics (cont'd)
$V_{\mathrm{s}}=6$ to $18 \mathrm{~V} ; T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Outputs

RDSONU	-	-	-	0.4	Ω	$V_{\mathrm{S}}>6 \mathrm{~V} ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}^{1)}$
RDSONU	-	-	-	0.65	Ω	$V_{\mathrm{S}}>6 \mathrm{~V} ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}{ }^{1)}$
RDSONL	-	-	-	0.4	Ω	$V_{\mathrm{S}}>6 \mathrm{~V} ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}^{1)}$
RDSONL	-	-	-	0.65	Ω	$V_{\mathrm{S}}>6 \mathrm{~V} ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}^{1)}$
Diode forward voltage	V_{FU}	-	-	1.5	V	$I_{\mathrm{F}}=3 \mathrm{~A}$
Diode forward voltage	V_{FL}	-	-	1.5	V	$I_{\mathrm{F}}=3 \mathrm{~A}$

1) Values for RDSON are for $t>100 \mu \mathrm{~s}$ after applying $+V_{\mathrm{S}}$.
\qquad

Figure 3 Test Circuit

Figure 4 Timing Diagram
\qquad

*) Necessary for isolating supply voltage or interruption (e.g. $470 \mu \mathrm{~F}$).

Figure 5 Application Circuit

Diagrams

$R_{\text {oN }}$ Resistance of Output Stage over Temperature

Forward Current of Upper
Free-Wheeling Diode versus Voltage

Output Voltage on Diagnostics Output
versus Current

Forward Current of Lower Free-Wheeling Diode versus Voltage

Overcurrent Threshold versus Temperature

Input Threshold versus Temperature

Quiescent Current versus Temperature

Switching Threshold $V_{\mathrm{EL}, \mathrm{EH}}$ versus Temperature

Figure 6 Timing Diagram for Output Shorted to Ground

Figure 7 Timing Diagram for Output Shorted to $V_{\text {s }}$
\qquad

Figure 8 Timing Diagram for Overcurrent

Package Outlines

P-TO220-7-1

(Plastic Transistor Single Outline)

1) $0_{.75}^{-0.15}$ at dam bar (max 1.8 from body)
2) $0^{0.75_{-0.15}}$ im Dichtstegbereich (max 1.8 vom Körper)

GPT05108

P-TO220-7-8 (SMD)

(Plastic Transistor Single Outline)

1) shear and punch direction burr free surface

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information".
SMD = Surface Mounted Device
Dimensions in mm

