SECTION 13

ELECTRICAL SPECIFICATIONS

This section contains the electrical specifications and associated timing information for the MC68HC11G5.

13.1 MAXIMUM RATINGS [†]

Rating	Symbol	Value	Unit
Supply Voltage	۷ _{DD}	- 0.5 to 7.0	٧
Input Voltage	V _{in}	V _{SS} – 0.5 to V _{DD} + 0.5	>
Operating Temperature Range	Тд	T _L to T _H - 40 to 85	°C
Storage Temperature Range	T _{stg}	- 65 to 150	°C
Current Drain per Pin * Excluding VDD and VSS	ΙD	25	mA

^{*} One pin at a time, observing maximum power dissipation limits.

[†] This device contains protective circuitry against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (eg. either GND or VDD).

13.2 THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Plastic	θJΑ	50	°C/W

13.3 POWER CONSIDERATIONS

The average chip junction temperature, T_J, in degrees Celsius can be obtained from the following equation:

$$T_{J} = T_{A} + (P_{D} \bullet \theta_{JA}) \tag{1}$$

Where:

T_A = Ambient temperature (°C)

θ_{JA} = Package thermal resistance, junction-to-ambient (^OC/W)

 $P_D = P_{INT} + P_{I/O}$

 P_{INT} = Internal chip power = $I_{DD} \times V_{DD}$ (W)

 P_{UO} = Power dissipation on input and output pins (W) — user determined)

Note: For most applications P_{I/O} < P_{INT} and can be neglected.

An approximate relationship between PD and TJ (if PI/O is neglected) is:

$$P_D = K + (T_J + 273^{\circ}C)$$
 (2)

Solving equations (1) and (2) for K gives:

$$K = P_D \bullet (T_A + 273^{\circ}C) + \theta_{JA} \bullet P_D^2$$
 (3)

Where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) for any value of T_A .

13.4 DC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H \text{ unless otherwise noted})$

	Characteristic	Symbol	Min	Max	Unit
Output Voltage	Ail outputs	VOL	_	0.1	V
$I_{Load} = \pm 10.0 \mu A$ (See Note 1)	All outputs except RESET and MODA	۷он	V _{DD} -0.1	_	
Output High Voltage	All outputs except	Voн	V _{DD} - 0.8	_	V
I _{Load} = - 0.8mA, V _{DD} = 4.5V (See No	ote 1) RESET, XTAL and MODA				
Output Low Voltage	All outputs except XTAL	VOL	_	0.4	V
ILoad = 1.6mA					
Input High Voltage	RESET	VIH	0.8 x V _{DD}	VDD	V
	All inputs except RESET	VIH	0.7 x V _{DD}	۷ _{DD}	
Input Low Voltage	All Inputs	VIL	_	0.8	V
ILoad = 1.6mA					
I/O Ports, Three-state Leakage	PA0-7, PC0-7, PD0-5, PG0-7,	loz	_	±10	μΑ
Vin = VIH or VIL	PH0-7, PJ0-3, MODA/LIR, RESET				
Input Current	All Inputs	l _{in}	_	±1.0	μΑ
Vin = VDD or VSS					
RAM Standby Voltage	Powerdown	V _{SB}	2.0	v_{DD}	V
RAM Standby Current	Powerdown	ISB	_	20	μΑ
Total Supply Current (See Note 2)		^I DD			
RUN:					
Single-Chip Mode	IDD (run)		_	30	mA
WAIT: (All Peripheral Functions Shut	Down)				
Single-Chip Mode	I _{DD} (wait)		_	15	mA
STOP: (No Clocks)					1
Single-Chip Mode	I _{DD} (stop)		_	100	μΑ
Input Capacitance	ĪRQ, XIRQ, EXTAL	C _{in}	_	12	pF
MOD	A/LIR, RESET, all Ports except Port E	Cin	_	12	pF

NOTES:

1. V_{OH} specification for RESET and MODA is not applicable because they are open-drain pins.

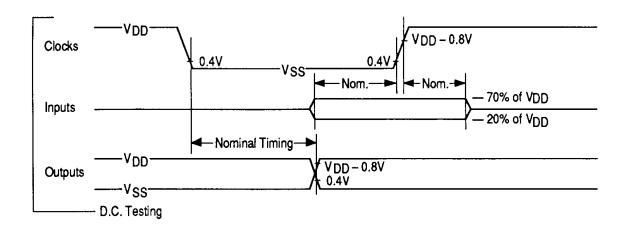
VOH specification is not applicable to ports C and D in wired-OR mode.

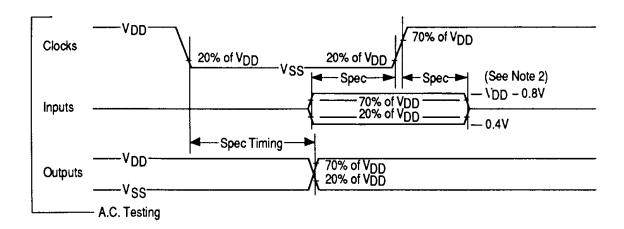
2. All ports configured as inputs,

 $V_{IL} \leq 0.2V$,

 $V_{IL} \ge V_{DD} - 0.2V$

No dc loads,


EXTAL is driven with a square wave, and


 t_{CYC} = 476.5ns.

Equivalent Test Load 1

Pins	R1	R2	C1
PA0-7, PB0-7, PC0-7, PD0, PD5,	3.26kΩ	2.38kΩ	90pF
PF0-7, PG0-7, PH0-7, PJ0-3, E, R/W			
PD1-PD4	3.26kΩ	2.38kΩ	200pF

Notes: 1. Full test loads are applied during all DC electrical tests and AC timing measurements.

2. During AC timing measurements, inputs are driven to 0.4 volts and VDD – 0.8 volts while timing measurements are taken at the 20% and 70% of VDD points.

Figure 13-1. Test Methods

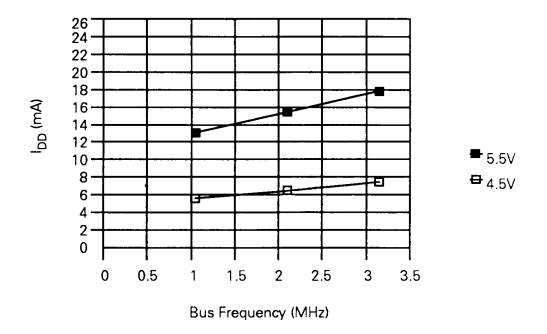


Figure 13-2. Run I_{DD} vs Bus Frequency (Single Chip Mode – 4.5V, 5.5V)

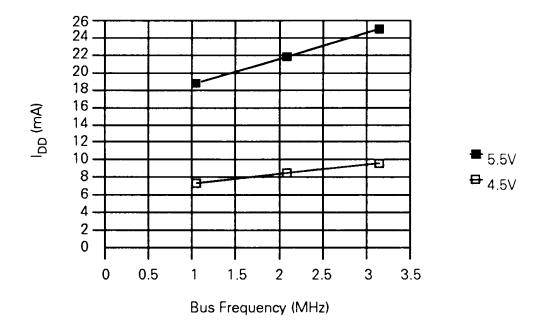


Figure 13-3. Run I_{DD} vs Bus Frequency (Expanded Mode – 4.5V, 5.5V)

Downloaded from Elcodis.com electronic components distributor

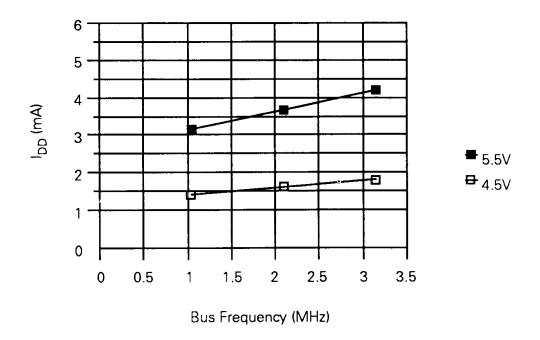


Figure 13-4. Wait I_{DD} vs Bus Frequency (Single Chip Mode – 4.5V, 5.5V)

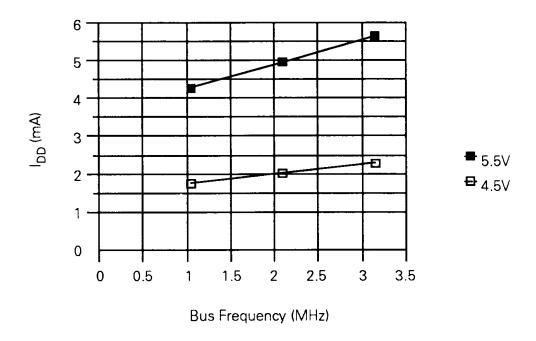


Figure 13-5. Wait I_{DD} vs Bus Frequency (Expanded Mode – 4.5V, 5.5V)

13.5 CONTROL TIMING

(V_{DD} = 5.0 Vdc ± 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H unless otherwise noted)

		Symbol	Min	Max	Unit
External Oscillator Frequency	Crystal option External clock option	fXTAL 4f _o	_ DC	8.4 8.4	MHz MHZ
Internal Operating Frequency	Crystal (f _{XTAL} /4) External clock	fo fo	 DC	2.1 2.1	MHz MHZ
Cycle Time	All outputs except XTAL	tcyc	476		ns
Crystal Oscillator Startup Time		toxov	_	100	ms
Stop Recovery Startup Time	DLY = 0 DLY = 1	tsrs tsrs	_	4 4064	t _{cyc} t _{cyc}
Wait Recovery Startup Time		twrs		4	tcyc
Reset Input Pulse Width (See Note 1) (To guarantee external reset vector) (Minimum input time; may be pre-empted by internal reset)		trlrh	8 1	_ _	[†] cyc
Mode Programming	Setup time Hold time	tMPS tMPH	2 0		t _{cyc}
Interrupt Pulse Width, IRQ Edge Sensitive Mode	tiLIH = t _{cyc} + 20ns	tiLiH	496	_	ns
Interrupt Pulse Period		tjLjL	Note 2		tcyc
Processor Control RESET, WAIT, IRQ MRDY	(tpcs = 1/4 t _{cyc} - 50ns)	tPCS tPCS	69 50	_	ns ns
HALT Bus Tri State Enable Bus Tri State Disable	$(t_{PCS} = 1/4 t_{CyC} + 20ns)$ $(t_{TSE} = 1/4 t_{CyC} + 40ns)$	tPCS tTSE tTSD	170 — —	159 65	ns ns ns

NOTES:

- RESET will be recognised during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt.
- 2. The minimum period t |L|L should not be less than the number of cycles it takes to execute the interrupt service routine plus 21 t cyc.
- 3. All timing is shown with respect to 20% V $_{DD}$ and 70% $_{DD}$ unless otherwise noted.

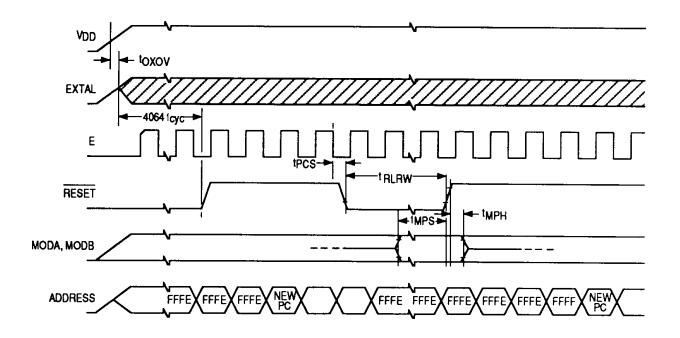


Figure 13-6. POR External RESET Timing Diagram

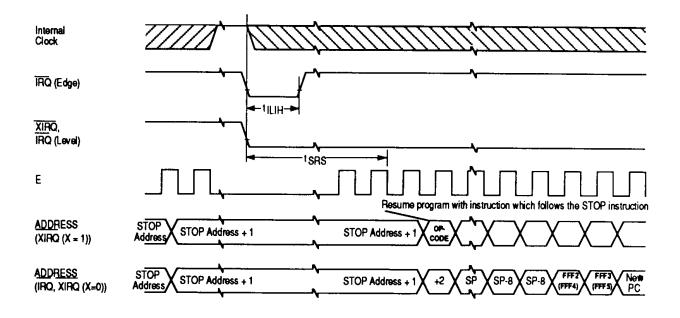


Figure 13-7. STOP Recovery Timing Diagram

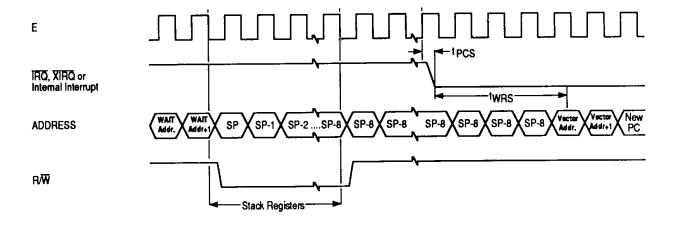


Figure 13-8. WAIT Recovery from Interrupt Timing Diagram

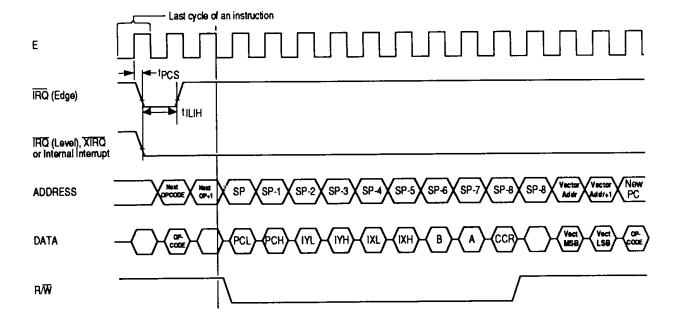


Figure 13-9. Interrupt Timing Diagram

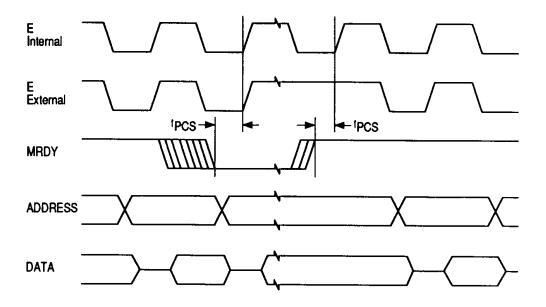


Figure 13-10. Memory Ready Timing Diagram

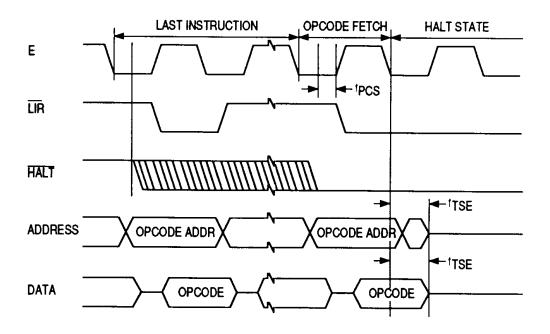


Figure 13-11. Entering HALT

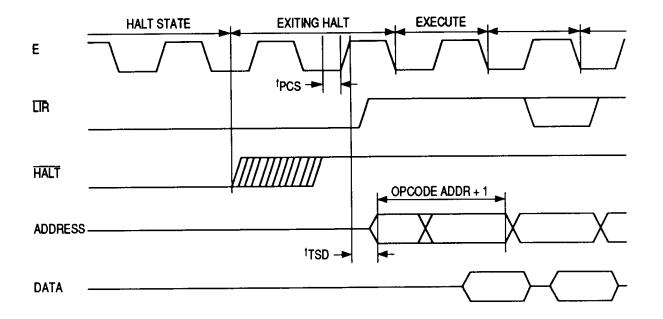


Figure 13-12. Exiting HALT

13.6 PERIPHERAL PORT CHARACTERISTICS

(VDD = 5.0 Vdc \pm 10%, VSS = 0 Vdc, $T_A = T_L$ to T_H unless otherwise noted)

Characteristic Frequency of Operation (E Clock)		Symbol	Min	Max	Unit
		fo	_	2.1	MHz
E Clock Period		tcyc	476	_	ns
Peripheral Data Setup Time) <u> </u>	4	
Port A, C, D, J		tPDSU	100		ns
Port E		tPDSU	100	_	ns
Port G, H	(tpDSU = -1/4 t _{cyc} + 93ns)	tPDSU	- 26		ns
Peripheral Data Hold Time					
Port A, C, D, J		tPDH	80	_	ns
Port E		tPDH	80	_	ns
Port G, H	(tPDH = 1/4 t _{cyc} + 130ns)	tPDH	249		ns
Delay Time, Peripheral Data Write					
Port J1, J2, A3, A4, A5, A6, A7		tPWD	_	150	ns
Port B, C, D, F, G, H, A0, A1, A2, J0, J3	(tpwD= 1/4 t _{cyc} + 90ns)	tPWD	_	209	ns

NOTES:

1. All timing is shown with respect to 20% V $_{DD}$ and 70% V $_{DD}$ unless otherwise noted.

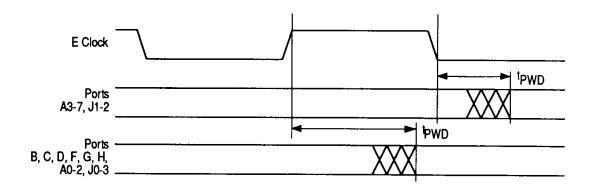


Figure 13-13. Port Write Timing Diagram

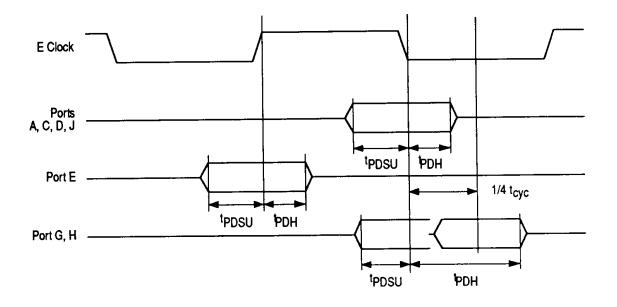
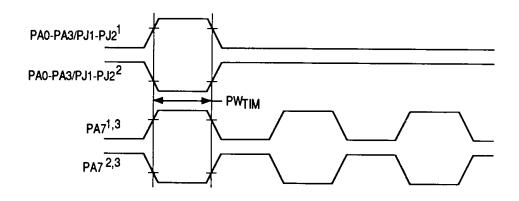


Figure 13-14. Port Read Timing Diagram


13.7 **TIMER CHARACTERISTICS**

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H \text{ unless otherwise noted})$

Characteristic		Symbol	Min	Max	Unit
Timer Pulse Width Input Capture Pulse Accumulator Input	(PWTIM = t _{cyc} + 20ns)	PWTIM	496		ns
Timer Output Compare High Valid		toch	_	310	ns
Timer Output Compare Low Valid		tocl	_	295	ns
Timer Input Capture Response Delay Min = t cyc + 20ns		^t CAP	496	1172	ns

NOTES:

1. All timing is shown with respect to 20% V DD and 70% VDD unless otherwise noted.

Notes:

- Rising edge sensitive input.
 Failing edge sensitive input.
 Maximum pulse accumulator clocking rate is E frequency divided by 2.

Figure 13-15. Timer Inputs Timing Diagram

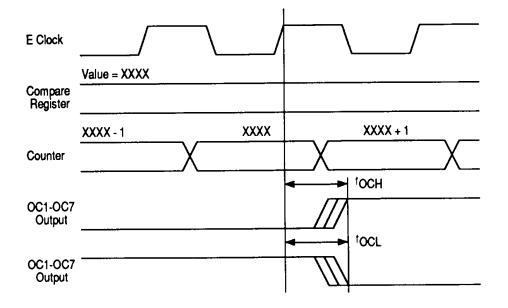


Figure 13-16. Output Compare Timing Diagram

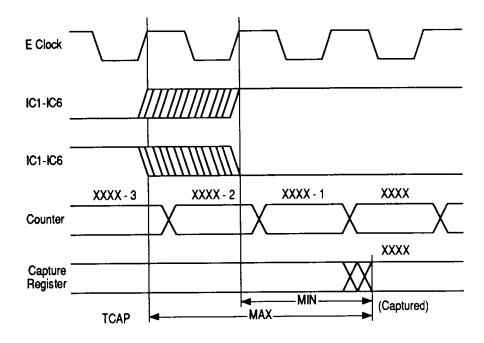


Figure 13-17. Input Capture Timing Diagram

13.8 A/D CONVERTER CHARACTERISTICS

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H, E = 750 \text{kHz to } 2.1 \text{MHz unless otherwise noted})$

			,		
Characteristic	Parameter	Min	Absolute	Max	Unit
Resolution	Number of bits resolved by the A/D	10		_	Bits
Nonlinearity	Maximum deviation from the ideal A/D transfer characteristics		_	TBD	LSB
Zero Error	Difference between the output of an ideal and an actual A/D for zero input voltage	_		TBD	LSB
Full Scale Error	Difference between the output of an ideal and an actual A/D for full scale input voltage	_	_	TBD	LSB
Total Unadjusted Error	Maximum sum of Nonlinearity, zero error and full scale error	_	_	TBD	LSB
Quantization Error	Uncertainty due to converter resolution	_		±0.5	LSB
Absolute Accuracy (See Note 1)	Difference between the actual input voltage and the full scale weighted equivalent of the binary output code, all error sources included	_		TBD	LSB
Conversion Range (See Notes 3 and 4)	Analog input voltage range	V _{rl}	_	V _{rh}	٧
V _{rh} (See Note 2)	Maximum analog reference voltage	V _{rl}	_	V _{DD} + 0.1	V
V _{rl} (See Note 2)	Minimum analog reference voltage	V _{SS} - 0.1	_	V _{rh}	٧
Delta V _r (See Note 2)	Minimum difference between V _{rh} and V _{rl}	0	-	_	٧
Conversion Time	Total time to perform a single analog to digital conversion: 1. E Clock 2. Internal RC Oscillator	_	36 —	 t _{cyc} + 24	^t cyc µs
Monotonicity	Conversion result never decreases with an increase in input voltage and has no missing codes		Guarar	<u> </u>	μσ
Zero Input Reading (See Note 3)	Conversion result when V in = V _{rI}	\$000	_	_	Hex
Full Scale reading (See Note 4)	Conversion result when V in = V _{rh}		_	\$3FF	Hex
Sample Acquisition Time	Analog Input Acquisition sampling time: 1. E Clock 2. Internal RC Oscillator	_	13 —	— 8.7	t _{cyc} μs
Sample Hold Capacitance	Input capacitance during sample PE0-PE7	_	35 (Typ)	_	pF
Input Leakage	Input leakage on A/D pins: PE0-PE7 Vrl, Vrh	<u> </u>		100 250	nA μA

NOTES:

- 1. Source impedances greater then $10k\Omega$ will adversely affect accuracy, due mainly to input leakage.
- 2. Performance verified down to 2.5V Delta V_{f} , but accuracy is tested and guaranteed at Delta $V_{f} = 5V \pm 10\%$.
- 3. Minimum analog input voltage should not go below V $_{\mbox{SS}}$ 0.3V.
- 4. Maximum analog input voltage should not exceed 1.125V rh.

13.9 EXPANSION BUS TIMING

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H \text{ unless otherwise noted})$

Num	Characteristic	Symbol	Min	Max	Unit
	Frequency of Operation (E-Clock)	fo	_	2.1	MHz
1	Cycle Time	t _{cyc}	476	_	ns
2	Pulse Width E Low (1/2 t _{cyc} - 23ns)	t ELEH	215	_	ns
3	Pulse Width E High (1/2 t _{cyc} - 28ns)	t EHEL	210	_	ns
4	E Rise and Fall Time	t _R , t _F		20	ns
9	Address Hold Time (t _{AH} = 1/8 t _{cyc} - 29.5ns) (See Note 1(A))	tAH	30		ns
12	Address Valid Time to E Rise (See Note 1(B))	tAV	120	_	ns
17	Read Data Setup Time	tDSR	30	_	ns
18	Read Data Hold Time	tDHR	10	_	ns
19	Write Data Delay Time	tDDW	_	80	ns
21	Write Data Hold Time	tDHW	50		ns
29	MPU Address Access Time (tACCA = tAV + tR + tEHEL - tDSR (See Note 1(A))	tACCA	320		ns

NOTES:

- 1. Input clock with duty cycle other than 50% will affect the bus performance. Timing parameters affected by the input clock duty cycle are identified by (A) and (B). To re-calculate approximate bus timing values, substitute the following expressions in place of 1/8 t cyc in the above formulae where applicable:
 - (A) (1-DC) x 1/4 t cyc
 - (B) DC x 1/4t_{cvc}

where DC is the decimal value of duty cycle percentage (High time).

2. All timing is shown with respect to 20% V DD and 70% VDD.

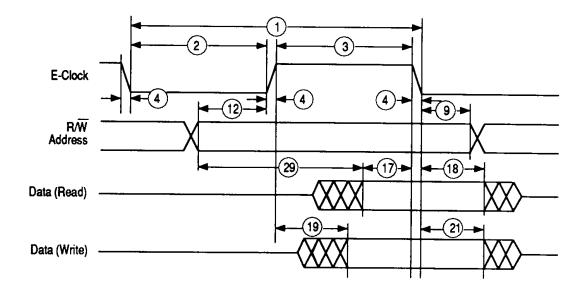
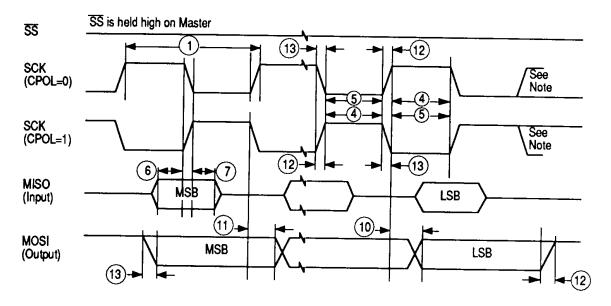


Figure 13-18. Non-multiplexed Expanded Bus

13.10 SERIAL PERIPHERAL INTERFACE (SPI) TIMING

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H \text{ unless otherwise noted})$

Num	Characteristic		Symbol	Min	Max	Unit
	Operating Frequency	Master Slave	fop(m) fop(s)	dc dc	0.5 2.1	f _o MHz
1	Cycle Time	Master Slave	tcyc(m) tcyc(s)	2.0 480	_ 	t _{cyc}
2	Enable Lead Time	Master Slave	^t lead(m) ^t lead(s)	• 240	_ 	ns ns
3	Enable Lag Time	Master Slave	tlag(m) tlag(s)	240	_ _	ns ns
4	Clock (SCK) High Time	Master Slave	tw(SCKH)m	340 190	_ _	ns ns
5	Clock (SCK) Low Time	Master Slave	tw(SCKL)m tw(SCKL)s	340 190	<u>-</u>	ns ns
6	Data Setup Time	Master Slave	t _{su(m)} t _{su(s)}	100 100	_ 	ns ns
7	Data Hold Time	Master Slave	^t h(m) ^t h(s)	100 100	_ 	ns ns
8	Access Time (Time to Data Active from High-Impedance State)	Slave	t _a	0_	120	ns
9	Disable Time (Hold Time to High-Impedance State)	Slave	[†] dis		240	ns
10	Data Valid (After Enable Edge)**		tv(s)		240	ns
11	Data Hold Time (Outputs) (After Enable Edge)		tho	- 40		ns
12	Rise Time (20% V DD to 70% VDD, CL = 200pF) SPI Outputs (SCK, MOSI, MISO) SPI Inputs (SCK, MOSI, MISO, SS)		tr(m)	_ 	100 2.0	ns µs
13	Fall Time (70% V _{DD} to 20% V _{DD} , C _L = 200pF) SPI Outputs (SCK, MOSI, MISO) SPI Inputs (SCK, MOSI, MISO, SS)		tf(m)	_ 	100 2.0	ns µs


NOTES:

- Signal production depends on software.
- ** Assumes 200 pF load on all SPI pins.
- 1. All timing is shown with respect to 20% V DD and 70% V DD unless otherwise noted.

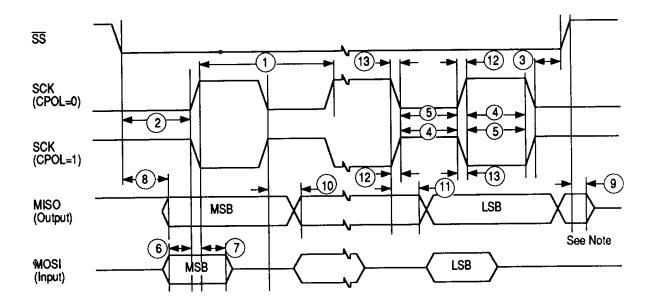

Note: This first edge is generated internally but is not seen at the SCK pin.

Figure 13-19. SPI Master Timing (CPHA = 0)

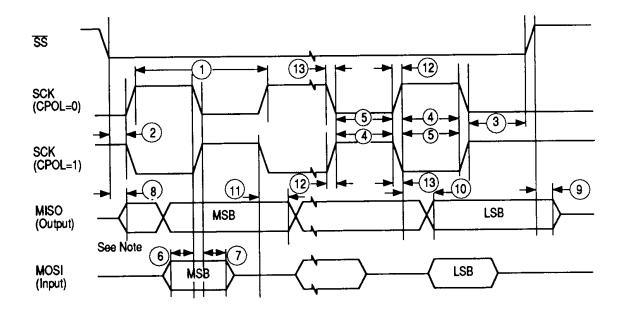

Note: This last edge is generated internally but is not seen at the SCK pin.

Figure 13-20. SPI Master Timing (CPHA = 1)

Note: Not defined but normally MSB of character just received.

Figure 13-21. SPI Slave Timing (CPHA = 0)

Note: Not defined but normally LSB of character previously transmitted.

Figure 13-22. SPI Slave Timing (CPHA = 1)

13.11 EVENT COUNTER CHARACTERISTICS

Table 13.1. Clock Input (Required Limit)

Clock Input (Required Limit)

Num	Characteristic	Symbol	Min	Max	Unit
1	Cycle Time of External Clock Input	tcycex	3xt _{cyc}	_	ns
2	Clock High Time	twckh	1.5xt _{cyc}		ns
3	Clock Low Time	twckl	1xt _{cyc}	_	ns
4	Rise Time	trck	_	0.25xt _{cyc}	ns
5	Fall Time	tfck	_	0.25xt _{cyc}	ns

Table 13.2. Clock Input (Guaranteed Limit)

Clock Input (Guaranteed Limit)

Num	Characteristic	Symbol	Min	Max	Unit
6	Propagation Delay External Clock Rise to EVO Valid	tovr	1.5xt _{cyc}	2.5xt _{cyc} + 240	ns
7	Propagation Delay External Clock Fall to EVO Valid	tovf	1.5xt _{cyc}	2.5xt _{cyc} + 240	ns

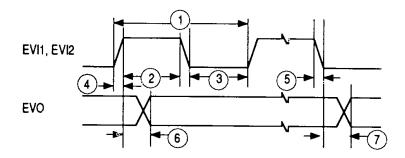


Figure 13-23. Event Counter Mode 1, 2, 3 - Clock Input Timing Diagram

Table 13.3. Clock Gate Input (Guaranteed Limit)

Clock Gate Input (Required Limit)

Num	Characteristic	Symbol	Min	Max	Unit
1	Gate Input Setup Time to E Fall	tgsu	0.25xt _{cyc}		ns
2	Gate Input Hold Time to E Fall	^t gh_	0.5xt _{cyc}		ns

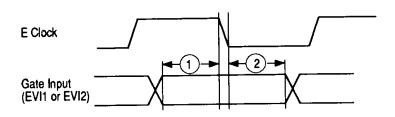


Figure 13-24. Event Counter Mode 1, 2, 3 - Clock Gate Input Timing Diagram