HIGH VOLTAGE DRIVER FOR CFL
n BCD-OFF LINE TECHNOLOGY
n FLOATING SUPPLY VOLTAGE UP TO 570V
n GND REFERRED SUPPLY VOLTAGE UP TO 18 V
n UNDER VOLTAGE LOCK OUT
n CLAMPING ON Vs
n DRIVER CURRENT CAPABILITY: 30mA SOURCE 70 mA SINK
n PREHEAT AND FREQUENCY SHIFT TIMING

DESCRIPTION

The device is a monolithic high voltage integrated circuit designed to drive CFL and small TL lamps with a minimum part count.
It provides all the necessary functions for proper preheat, ignition and steady state operation of the lamp:

- variable frequency oscillator;
MULTIPOWER BCD TECHNOLOGY
- settable preheating and ignition time;
- capacitive mode protection;
- lamp power independent from mains voltage variation. Besides the control functions, the IC provides the level shift and drive function for two external power MOS FETs in a half-bridge topology.

BLOCK DIAGRAM

January 2000
This is preliminary information on a new product now in development. Details are subject to change without notice.

PIN FUNCTION

\mathbf{N}°	Pin	
1	F $_{\text {S }}$	Floating Supply of high side driver
2	G1	Gate of high side switch
3	S1 $^{\prime}$	Source of high side switch
4	NC	High Voltage Spacer. (Should be not connected)
5	V $_{\text {S }}$	Supply Voltage for GND level control and drive
6	G2	Gate of low side switch
7	PGND	Power Ground
8	CP	First timing (TPRE TIGN), then averaging the ripple in the representation of the HVB (derived through RHV).
9	RS	RSHUNT: current monitoring input
10	$R_{\text {REF }}$	Reference resistor for current setting
11	SGND	Signal Ground. Internally Connected to PGND
12	CF	Frequency setting capacitor
13	RHV	Start-up supply resistor, then supply voltage sensing.
14	CI	Timing capacitor for frequency shift

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {S }}$	Low Voltage Supply	18 (1)	V
VRHV	Mains Voltage Sensing	VS +2VBE (2)	
$V_{C P}$	Preheat/Averaging	5	V
V_{CF}	Oscillator Capacitor Voltage	5	V
V_{Cl}	Frequency Shift Capacitor Voltage	5	V
$V_{\text {RREF }}$	Reference Resistor Voltage	5	V
$\mathrm{V}_{\text {RS }}$	Current Sense Input Voltage	-5 to 5	V
	transient 50ns	-15	V
$\mathrm{V}_{\mathrm{G} 2}$	Low Side Switch Gate Output	18	V
$\mathrm{V}_{\text {S } 1}$	High Side Switch Source Output: normal operation	-1 to 373	V
	0.5 sec mains transient	-1 to 550	V
VG1	High Side Switch Gate Output: normal operation	-1 to 391	V
	0.5 sec mains transient	-1 to 568	V
	with respect to pin S1	$\mathrm{V}_{\text {be }}$ to V_{S}	V
$V_{\text {FS }}$	Floating Supply Voltage: normal operation	391	V
	0.5 sec mains transient	568	V
$\mathrm{V}_{\mathrm{FS} / \mathrm{S} 1}$	Floating Supply vs S1 Voltage	18	V
$\Delta V_{F S} / \Delta T$	VFS Slew Rate (Repetitive)	-4 to 4	V/ns
$\Delta \mathrm{V}_{\text {S1 }} / \Delta \mathrm{T}$	VS1 Slew Rate (Repetitive)	-4 to 4	V/ns
IRHV	Current Into RHV	3 (3)	mA
IVs	Clamped Current into VS	200 (4)	mA
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

NOTES: (1) Do not exceed package thermal dissipation limits
(2) For VS \leq VS high 1
(3) For VS > VS high 1
(4) Internally Limited

Note: ESD immunity for pins 1,2 and 3 is guaranteed up to 900 V (Human Body Model)

ELECTRICAL CHARACTERISTCS
($\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{REF}}=30 \mathrm{~K} \Omega ; \mathrm{C}_{\mathrm{F}}=100 \mathrm{pF} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit

$V_{\text {S }}$ - SUPPLY VOLTAGE SECTION

$V_{S \text { high } 1}$	$\mathrm{V}_{\text {S }}$ Turn On Threshold		10.7	11.7	12.7	V
V_{S} high2	V ${ }_{\text {S }}$ Clamping Voltage	$\mathrm{VS}=20 \mathrm{~mA}$	12	13	14	V
$V_{\text {S low } 2}$	V_{S} Turn Off Threshold		9	10	11	V
$V_{\text {S HYST }}$	Supply Voltage Hysteresis		1.5	1.65	1.8	V
$\mathrm{V}_{\text {S low } 1}$	V_{S} Voltage to Guarantee $\mathrm{V}_{\mathrm{G} 1}=" 0$ "and $\mathrm{V}_{\mathrm{G} 2}=" 1$		1		6	V
Issp	V S Supply Current at Start Up	$\mathrm{V}_{S}=10.6 \mathrm{~V}$ Before turn on	50		250	mA
Isop	$\mathrm{V}_{\text {S }}$ Supply Operative Current	V S $=$ VShigh 1			1.2	mA

OSCILLATOR SECTION

$\mathrm{f}_{\text {osc min }}$	Minimum Oscillator frequency	$\mathrm{I}_{\mathrm{RHV}}=0 \mathrm{~mA} ; \mathrm{CI}=5 \mathrm{~V}$	41.7	43	44.29	kHz
$\mathrm{f}_{\text {osc } 600 \mathrm{~m}}$	Feed Forward Frequency	$\mathrm{I}_{\mathrm{RHV}}=600 \mathrm{~mA}$	47.88	50.4	52.92	kHz
$\mathrm{f}_{\text {osc } 1 \mathrm{~mA}}$	Feed Forward Frequency	$\mathrm{I}_{\mathrm{RHV}}=1 \mathrm{~mA}$	79.8	84	88.2	kHz
fosc max	Maximum Oscillator Frequency	$\mathrm{CI}=0 \mathrm{~V}$	96.75	107.5	118.25	KHz
$\Delta \mathrm{ICF}_{\mathrm{CF}} / \Delta \mathrm{V}_{\mathrm{CI}}$	Oscillator Transconductance		9		17.5	$\mu \mathrm{~A} / \mathrm{V}$

PREHEAT/IGNITION SECTION

P.H.T.	Preheat Time	$\mathrm{Cp}=150 \mathrm{nF}$	0.88	1	1.12	sec
P.H.clocks	Number of Preheat Clocks			16		
IGN.clocks	Number of Ignition Clocks			15		

RATE OF FREQUENCY CHANGE SECTION

ICIP charge	CI Charging Current During Preheat		106	118	130	mA
ICII charge	CI Charging Current During Ignition		1	1.2	1.4	mA
ICI disch	CI Discharge Current		-52	-47	-42	mA
$\mathrm{~V}_{\text {TH CI }}$	CI Low Voltage Threshold		10		100	mV

RS - THRESHOLD SECTION

$\mathrm{V}_{\text {CMTH }}$	Capacitive Mode Voltage Threshold	0	20	40	mV	
V_{PH}	Preheat Voltage Threshold		-0.64	-0.6	-0.56	V

G1-G2 DELAY TIMES SECTION

G1 1 DON	On Delay of G1 Output		1.05	1.4	1.75	$\mu \mathrm{~s}$

ELECTRICAL CHARACTERISTCS (Continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
G2DON	On Delay of G2 Output		1.05	1.4	1.75	$\mu \mathrm{s}$
$\frac{\mathrm{G}_{1} \mathrm{DON}+\mathrm{G} 1_{\mathrm{ON}}}{\mathrm{G} 2_{\mathrm{DON}}+\mathrm{G} 2_{\mathrm{ON}}}$	Ratio between Delay Time + Conduction Time of G1 and G2	$\begin{array}{r} \mathrm{I}_{\mathrm{RHV}}=1 \mathrm{~mA} ; \mathrm{Cl}=5 \mathrm{~V} \\ \mathrm{CI}=0 \mathrm{~V} \end{array}$	$\begin{aligned} & 0.87 \\ & 0.77 \end{aligned}$		$\begin{aligned} & 1.15 \\ & 1.30 \end{aligned}$	

LOW SIDE DRIVER SECTION

Ron G 2 so	G2 Source Output Resistance	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~V}=3 \mathrm{~V}$	80		190	Ω
Ron G 2 si	G2 Sink Output Resistance	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~V}=3 \mathrm{~V}$	65		125	Ω
Ron G1 so	G1 Source Output Resistance	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}=3 \mathrm{~V}$	80		190	Ω
Ron G1 si	G1 Sink Output Resistance	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}=3 \mathrm{~V}$	65		125	Ω

HIGH SIDE DRIVER SECTION

$\mathrm{I}_{\text {FSLK }}$	Leakage Current of FS PIN to GND	$\begin{aligned} & \mathrm{V}_{\text {FS }}=568 \mathrm{~V} ; \mathrm{G} 1=\mathrm{L} \\ & \mathrm{~V}_{\mathrm{FS}}=568 \mathrm{~V} ; \mathrm{G} 1=\mathrm{H} \end{aligned}$	5 5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IS1 LK	Leakage Current of S1 PIN to GND	$\begin{aligned} & \mathrm{V}_{\mathrm{S} 1}=568 \mathrm{~V} ; \mathrm{G} 1=\mathrm{L} \\ & \mathrm{~V}_{\mathrm{S} 1}=568 \mathrm{~V} ; \mathrm{G} 1=\mathrm{H} \end{aligned}$	5 5	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

BOOTSTRAP SECTION

Boot Th	BOOTSTRAP Threshold	$\mathrm{V}_{\mathrm{S}}=10.6 \mathrm{~V}$ before turn on	$5\left(^{*}\right)$			V

AVERAGE RESISTOR

$R_{\text {AVERAGE }}$	Average Resistor		27	38.5	50	$\mathrm{k} \Omega$

General operation

The L6567 uses a small amount of current from a supply resistor(s) to start the operation of the IC. Once start up condition is achieved, the IC turns on the lower MOS transistor of the half bridge which allows the bootstrap capacitor to charge. Once this is achieved, the oscillator begins to turn on the upper and lower MOS transistors at high frequency, and immediately ramps down to a preheat frequency. During this stage, the IC preheats the lamp and after a predetermined time ramps down again until it reaches the final operating frequency. The IC monitors the current to determine if the circuit is operating in capacitive mode. If capacitive switching is detected, the IC increases the output frequency until zero-voltage switching is resumed.

Startup and supply in normal operation

At start up the L6567 is powered via a resistor connected to the RHv pin (pin 13) from the rectified mains. The current charges the C_{S} capacitor connected to the V_{S} pin (pin 5). When the V_{S} voltage reaches the threshold $\mathrm{V}_{\text {S LOW }}$ ($\max 6 \mathrm{~V}$), the low side MOS transistor is turned on while the high side one is kept off. This condition assures that the bootstrap capacitor is charged. When VSHIGH1 threshold is reached the oscillator starts, and the $R_{H V}$ pin does not provide anymore the supply current for the IC (see fig.1).

Figure 1. Start up

Oscillator

The circuit starts oscillating when the voltage supply V_{S} has reached the $\mathrm{V}_{\mathrm{SH}} \mathrm{HIGH} 1$ threshold. In steady state condition the oscillator capacitor C_{F} (at pin 12) is charged and discharged symmetrically with a current set mainly by the external resistor RREF connected to pin 10. The value of the frequency is determined by capacitor C_{F} and resistor RREF. This fixed value is called $\mathrm{F}_{\text {MIN }}$. A dead time $\mathrm{T}_{\text {DT }}$ between the ON phases of the transistors is provided for avoiding cross conduction, so the duty cycle for each is less than 50\%. The dead time depends on RREF value (fig. 7).
The IC oscillating frequency is between $\mathrm{F}_{\text {MIN }}$ and $\mathrm{F}_{\text {MAX }}=2.5 \cdot \mathrm{~F}_{\text {MIN }}$ in all conditions.

Preheating mode

The oscillator starts switching at the maximum frequency FMAX. Then the frequency decreases at once to reach the programmed preheating frequency (fig.2). The rate of decreasing (df/dt) is determined by the external capacitor Cl_{I} (pin 14). The preheat time TPRE is adjustable with external components (RREF and Cp). The preheat current is adjusted by sense resistance RSHUNT. During the preheating time the load current is sensed with the sense resistor RSHUNT (connected between pin 9-Rs- and pin 7-PGND-). At pin 9 the voltage drop on RSHUNT is sensed at the moment the low side MOS FET is turned off. There is an internal comparator with a fixed threshold $V_{P H}$: if $\mathrm{V}_{\mathrm{RS}}>\mathrm{V}_{\mathrm{PH}}$ the frequency is decreased and if $\mathrm{V}_{\mathrm{RS}}<\mathrm{V}_{\mathrm{PH}}$ the frequency is increased. If the V_{PH} threshold is reached, the frequency is held constant for the programmed preheating time TPRE.
TPRE is determined by the external capacitor Cp (pin8) and by the resistor RREF: Cp is charged 16 times with a current that depends on RREF, and these 16 cycles determine the TPRE.
So the preheat mode is programmable with external components as far as TPRE is concerned ($R_{R E F} \& C_{P}$) and as far as the preheating current is concerned (choosing properly RSHUNT and the resonant load components: L and CL).
The circuit is held in the preheating mode when pin $8(\mathrm{CP})$ is grounded.
In case $\mathrm{F}_{\text {MIN }}$ is reached during preheat, the IC assumes an open load. Consequently the oscillation stops with the low side MOS transistor gate on and the high side gate off. This condition is kept until \forall undershoots $\mathrm{V}_{\text {S LOW1 }}$.

Figure 2. Preheating and ignition state.

Ignition mode

At the end of the preheat phase the frequency decreses to the minimum frequency (FMiN), causing an increased coil current and a high voltage appearing across the lamp. That is because the circuit works near resonance. This high voltage normally ignites the lamp. There is no protection to avoid high ignition currents through the MOS transistors when the lamp doesn't ignite. This only occurs in an end of lamp life situation in which the circuit may break. Now the lowest frequency is the resonance frequency of L and $C L$ (the capacitor across the lamp). The ignition phase finishes when the frequency reaches FMIN^{\prime} or (at maximum) when the ignition time has elapsed. The ignition time is related to TPRE: $\mathrm{T}_{\text {IGN }}=(15 / 16) \cdot$ TPRE. The Cp capacitor is charged 15 times with the same current used to charge it during TPRE
The frequency shifting slope is determined by Cl .
During the ignition time the V_{RS} monitoring function changes in the capacitive mode protection.

Steady state operation: feed forward frequency

The lamp starts operating at $F_{M I N}$, determined by RREF and C_{F} directly after the ignition phase. To prevent too high lamp power at high mains voltages, a feed forward correction is implemented. At the end of the preheat phase the RHV pin is connected to an internal resistor to sense the High Voltage Bus. If the current in this resistor increases and overcomes a value set by RREF, the current that charges the oscillator capacitor C_{F} increases too. The effect is an increase in frequency limiting the power in the lamp. In order to prevent feed forward of the ripple of the VHV voltage, the ripple is filtered with capacitor CP on pin 8 and an integrated resistor RAVERAGE.

Figure 3. Burn state

FREQUENCY

Irhv

Capacitive mode protection

During ignition and steady state the operating frequency is higher than the resonance frequency of the load (L, CL, RLAMP and RFILAMENT), so the transistors are turned on during the conduction time of the body diode in order to maintain Zero Voltage Switching.
If the operating frequency undershoots the resonance frequency ZVS doesn't occur and causes hard switching of the MOS transistors. The L6567 detects this situation by measuring VRS when the low side MOS FET is turned on. At pin 9 there is an internal comparator with threshold $\mathrm{V}_{\mathrm{CM} \text { TH }}$ (typ $\sim 20 \mathrm{mV}$): if $\mathrm{V}_{\mathrm{RS}}<\mathrm{V}_{\mathrm{CM}}$ TH capacitive mode is assumed and the frequency is increased as long as this situation is present. The shift is determined by CI.

Steady state frequency

At any time during steady state the frequency is determined by the maximum on the following three frequencies:

```
fsteady state \(=\) MAX \{FMIN, ffeed forward fcapacitive mode protection .
```


IC supply

At start up the IC is supplied with a current that flows through RHV and an internal diode to the VS pin whichcharges the external capacitor Cs. In steady state condition RHV is used as a mains voltage sensor, so it doesn't provide anymore the supply current. The easiest way to charge the Cs capacitor (and to supply the IC) is to use a charge pump from the middle point of the half bridge.
To guarantee a minimum gate power MOS drive, the IC stops oscillating when V_{S} is lower than V_{S} HIGH2. It will restart once the V_{S} will become higher than $\mathrm{V}_{\text {SHIGH1 }}$. A minimum voltage hysteresis is guaranteed. The IC restarts operating at $f=F_{M A X}$, then the frequency shifts towards $F_{M I N}$. The timing of this frequency shifting is $T_{\text {IGN }}$ (that is: Cp capacitor is charged and discharged 15 times). Now the oscillator frequency is controlled as in standard burning condition (feed forward and capacitive mode control). Excess charge on CS_{S} is drained by an internal clamp that turns on at voltage VSCL .

Ground pins

Pin 7(PGND) is the ground reference of the IC with respect to the application. Pin 11(SGND) provides a local signal ground reference for the components connected to the pins $\mathrm{C}_{\mathrm{P}}, \mathrm{C}_{\mathrm{I}}, \mathrm{R}_{\mathrm{REF}}$ and C_{F}.

Relationship between external components and sistem working condition

L6567 is designed to drive CFL and TL lamps with a minimum part count topology. This feature implies that each external component is related to one or more circuit operating state.
This table is a short summary of these relationships:
$F_{\text {MIN }}--->R_{\text {REF }} \& C_{F}$
FFEED FORWARD ---> CF \& IRHV
Tpre \& Tign ---> Cp \& RREF
Fpre ---> RShunt, L, CL, LAMP
TDT ---> RREF
df/dt ---> C
Some useful formulas can well approximate the values:

$$
\mathrm{F}_{\mathrm{MIN}} \cong \frac{1}{8 \cdot \mathrm{R}_{\mathrm{REF}} \cdot \mathrm{C}_{\mathrm{F}}}
$$

If $I_{R H V}$ is greater than: $I_{R H V} \geq \frac{15}{R_{R E F}}$, the feed forward frequency is settled and the frequency value is fitted by the
following expression: following expression:

$$
\mathrm{F}_{\text {FEEDFORWARD }} \cong \frac{\mathrm{I}_{\mathrm{RHV}}}{121 \cdot \mathrm{C}_{\mathrm{F}}}
$$

Other easy formulas fit rather well:
$T_{D T} \cong 46.75 \cdot 10^{\wedge}-12 \cdot R_{R E F}$
TPRE $\cong 224 \cdot \mathrm{CP}^{2} \cdot \mathrm{R}_{\text {REF }}$
As far as df/dt is concerned, there are no easy formulas that fit the relation between $\mathrm{C}_{\mathrm{F}}, \mathrm{R}_{\mathrm{F}}$, and $\mathrm{C}_{\mathrm{I}} . \mathrm{C}_{\mathrm{I}}$ is charged and discharged by three different currents that are derived from different mirroring ratios by the current flowing on RREF. The voltage variations on C_{I} are proportional to the current that charges C_{F}, that is to say they are proportional to df/dt.
The values obtained in the testing conditions $\left(\mathrm{Cl}_{\mathrm{l}}=100 \mathrm{nF}\right)$ are:
during preheating and working conditions the typical frequency increase is $\sim 20 \mathrm{KHz} / \mathrm{ms}$, the typical decrease is ~-10Khz/ms;
During ignition the frequency variation is $\sim-200 \mathrm{~Hz} / \mathrm{ms}$.
If slower variations are needed, CI has to be increased.
Due to these tight relationships, it is recommended to follow a precise procedure: first RHV has to be chosen looking at startup current needs and dissipation problems. Then the feed forward frequency range has to be determined, and so C_{F} is set.
Given a certain CF, RREF is set in order to fix FMin. Now Cp can be chosed to set the desired Tpre and Tign. The other external parameters (RSHUNT^{2} and C_{I}) can be chosen at the end because they are just related to a single circuit parameters.

Figure 4. IC Operation

Figure 5. Working frequency vs khv @ RREF $=30 \mathrm{Kohm}$

Figure 6. Frequency vs 0 = @ RREF=30Kohm

Figure 7. Tdt vs RREF @ $C_{F}=100 \mathrm{pF}$

$11 / 15$

Figure 11. Frequency vs RHv @ $\mathrm{C}_{\mathrm{F}}=150 \mathrm{pF}$

Figure 12. FMIN: measurements and calculations

Figure 13. Freed forward: measurements and calculations

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
e		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

13/15

DIM.	mm			inch				
	MIN..	TYP.	MAX..	MIN..	TYP..	MAX..		
A			1.75			0.069		
a1	0.1		0.25	0.004		0.009		
a2			1.6			0.063		
b	0.35		0.46	0.014		0.018		
b1	0.19		0.25	0.007		0.010		
C		0.5			0.020			
c1	45° (typ.)							
D (1)	8.55		8.75	0.336		0.344		
E	5.8		6.2	0.228		0.244		
e		1.27			0.050			
e3		7.62			0.300			
F (1)	3.8		4	0.150		0.157		
G	4.6		5.3	0.181		0.209		
L	0.4		1.27	0.016		0.050		
M			0.68			0.027		
S	80 (max)							

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15 mm (.006inch).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

