32,768-word × 8-bit High Speed CMOS Static RAM

The Hitachi HM62256A is a CMOS static RAM organized 32-kword × 8-bit. It realizes higher performance and low power consumption by employing 0.8 µm Hi-CMOS process technology. The device, packaged in a 8 × 14 mm TSOP with thickness of 1.2 mm, 450-mil SOP (foot print pitch width), 600-mil plastic DIP, or 300-mil plastic DIP, is available for high density mounting. TSOP package is suitable for cards, and reverse type TSOP is also provided. It offers low power standby power dissipation; therefore, it is suitable for battery back up system.

Features

- High speed: Fast Access time 85/100/120/150 ns (max)
- Low Power Standby: 5 μW (typ) (L/L-SL version) Operation: 40 mW (typ) (f = 1 MHz)
- Single 5 V supply
- Completely static memory No clock or timing strobe required
- Equal access and cycle times
- Common data input and output: Three state output
- Directly TTL compatible: All inputs and outputs
- Capability of battery back up operation

Ordering Information

Type No.	Access time	Package
HM62256AP-8	85 ns	600-mil
HM62256AP-10	100 ns	28-pin
HM62256AP-12	120 ns	plastic DIP
HM62256AP-15	150 ns	(DP-28)
HM62256ALP-8	85 ns	
HM62256ALP-10	100 ns	
HM62256ALP-12	120 ns	
HM62256ALP-15	150 ns	
HM62256ALP-8SL	85 ns	
HM62256ALP-10SL	100 ns	
HM62256ALP-12SL	120 ns	
HM62256ALP-15SL	150 ns	
HM62256ASP-8	85 ns	300-mil
HM62256ASP-10	100 ns	28-pin
HM62256ASP-12	120 ns	plastic DIP
HM62256ASP-15	150 ns	(DP-28NA)
HM62256ALSP-8	85 ns	
HM62256ALSP-10	100 ns	
HM62256ALSP-12	120 ns	
HM62256ALSP-15	150 ns	
HM62256ALSP-8SL	85 ns	
HM62256ALSP-10SL	100 ns	
HM62256ALSP-12SL	120 ns	
HM62256ALSP-15SL	150 ns	
HM62256AFP-8T	85 ns	450-mil
HM62256AFP-10T	100 ns	28-pin
HM62256AFP-12T	120 ns	plastic SOP
HM62256AFP-15T	150 ns	(FP-28DA)
HM62256ALFP-8T	85 ns	
HM62256ALFP-10T	100 ns	
HM62256ALFP-12T	120 ns	
HM62256ALFP-15T	150 ns	
HM62256ALFP-8SLT	85 ns	
HM62256ALFP-10SLT		
HM62256ALFP-12SLT	120 ns	
HM62256ALFP-15SLT	150 ns	

Note: This device is not available for new application.

TSOP Series

Type No.	Access time	Package	Type No.	Access time	Package	
HM62256ALT-8	85 ns	8 mm × 14 mm	HM62256ALR-8	85 ns	8 mm × 14 mm	
HM62256ALT-10	100 ns	32-pin TSOP	HM62256ALR-10	100 ns	32-pin TSOP	
HM62256ALT-12	120 ns	(normal type)	HM62256ALR-12	120 ns	(reverse type)	
HM62256ALT-15	150 ns	(TFP-32DA)	HM62256ALR-15	150 ns	(TFP-32DAR)	
HM62256ALT-8SL	85 ns		HM62256ALR-8SL	85 ns		
HM62256ALT-10SL	100 ns		HM62256ALR-10SL	100 ns		
HM62256ALT-12SL	120 ns		HM62256ALR-12SL	120 ns		
HM62256ALT-15SL	150 ns		HM62256ALR-15SL	150 ns		

Pin Arrangement

Pin Description

Symbol	Function	Symbol	Function
A0 – A14	Address	OE	Output enable
I/O0 – I/O7	Input/output	NC	No connection
CS	Chip select	V _{CC}	Power supply
WE	Write enable	V _{SS}	Ground

Block Diagram

Function Table

WE	CS	ŌĒ	Mode	V _{CC} current	I/O pin	Ref. cycle
X	Н	Х	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Output disable	I _{CC}	High-Z	_
Н	L	L	Read	I _{CC}	Dout	Read cycle (1)–(3)
L	L	Н	Write	I _{CC}	Din	Write cycle (1)
L	L	L	Write	I _{CC}	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Voltage on any pin relative to V _{SS}	V _T	-0.5 ^{*1} to +7.0	V	
Power dissipation	P _T	1.0	W	
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-55 to +125	°C	
Storage temperature under bias	Tbias	-10 to +85	°C	

Note: 1. $V_T \min = -3.0 \text{ V}$ for pulse half-width $\leq 50 \text{ ns}$

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	_	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.5 ^{*1}	_	0.8	V

Note: 1. V_{IL} min = -3.0 V for pulse half-width \leq 50 ns

HM62256A Series

HM62256A Series

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)

Parameter		Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leaka	Input leakage current		_		1	μΑ	$Vin = V_{SS}$ to V_{CC}
Output leakage current		I _{LO}	_	_	1	μΑ	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}},$ $\text{V}_{\text{I/O}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$
Operating V _{CC} current		I _{CC}	_	6	15	mA	CS = V _{IL} , others = V _{IH} /V _{IL} lout = 0 mA
	HM62256A-8 HM62256A-10 HM62256A-12 HM62256A-15	I _{CC1}	_ _ _	33 30 27 24	50 50 45 40	mA	$\frac{\text{min cycle, duty} = 100\%, I_{I/O} = 0 \text{ mA}}{\overline{\text{CS}}} = V_{IL}, \text{ others} = V_{IH}/V_{IL}$
		I _{CC2}	_	5	15	mA	$\frac{\text{Cycle time} = 1 \mu \text{s, } I_{\text{I/O}} = 0 \text{ mA}}{\overline{\text{CS}} = V_{\text{IL}}, V_{\text{IH}} = V_{\text{CC}}, V_{\text{IL}} = 0}$
Standby V _C	CC current	I _{SB}	_	0.3	2	mA	CS = V _{IH}
		I _{SB1}	_	0.01	1	mA	$\frac{\text{Vin} \ge 0 \text{ V}}{\text{CS}} > \text{V} \qquad 0.3 \text{ V}$
			_	0.3*2	100*2	μΑ	- CS ≥ V _{CC} – 0.2 V
			_	0.3*3	50 ^{*3}	μΑ	-
Output low	voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high	Output high voltage		2.4		_	V	I _{OH} = -1.0 mA

Notes: 1. Typical values are at V_{CC} = 5.0 V, Ta = +25°C and not guaranteed. 2. This characteristics is guaranteed only for L-version.

3. This characteristics is guaranteed only for L-SL version.

Capacitance $(Ta = 25^{\circ}C, f = 1 \text{ MHz})^{*1}$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	_	6	pF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	_	8	pF	V _{I/O} = 0 V

1. This parameter is sampled and not 100% tested. Note:

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted.)

Test Conditions

• Input pulse levels: 0.8 V to 2.4 V

• Input and output timing refernce levels: 1.5 V

• Input rise and fall times: 5 ns

• Output load: 1 TTL Gate + C_L (100 pF) (Including scope & jig)

Read Cycle

		HM622	256A-8	HM622	256A-10	HM62256A-12		HM62256A-15			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Read cycle time	t _{RC}	85	_	100	_	120	_	150	_	ns	
Address access time	t _{AA}	_	85	_	100	_	120	_	150	ns	
Chip select access time	t _{ACS}	_	85	_	100	_	120	_	150	ns	
Output enable to output valid	t _{OE}	_	45	_	50	_	60	_	70	ns	
Chip selection to output in low-Z	^t CLZ	10	_	10	_	10	_	10	_	ns	2
Output enable to output in low-Z	^t OLZ	5	_	5	_	5	_	5	_	ns	2
Chip deselection to output in high-Z	^t CHZ	0	30	0	35	0	40	0	50	ns	1, 2
Output disable to output in high-Z	^t OHZ	0	30	0	35	0	40	0	50	ns	1, 2
Output hold from address change	^t OH	5	_	10	_	10	_	10	_	ns	

Read Timing Waveform (1) *3

Read Timing Waveform (2) *3 *4 *6

Read Timing Waveform (3) *3 *5 *6

- Notes: 1. t_{CHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
 - 2. This parameter is sampled and not 100% tested.
 - 3. $\overline{\text{WE}}$ is high for read cycle.

 - 4. Device is continuously selected, \$\overline{CS}\$ = V_{IL}.
 5. Address Valid prior to or coincident with \$\overline{CS}\$ transition Low.
 - 6. $\overline{OE} = V_{II}$.

Write Cycle

		HM622	256A-8	HM622	256A-10	HM62256A-12		HM622	256A-15		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Write cycle time	t _{WC}	85	_	100	_	120	_	150	_	ns	
Chip selection to end of write	t _{CW}	75	_	80	_	85	_	100	_	ns	2
Address setup time	t _{AS}	0	_	0	_	0	_	0		ns	3
Address valid to end of write	t _{AW}	75	_	80	_	85	_	100	_	ns	
Write pulse width	t _{WP}	55	_	60	_	70	_	90	_	ns	1
Write recovery time	t _{WR}	0	_	0		0	_	0		ns	4
WE to output in high-Z	t _{WHZ}	0	30	0	35	0	40	0	50	ns	10
Data to write time overlap	t _{DW}	40	_	40	_	50	_	60	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	0	_	ns	
Output active from end of write	t _{OW}	5	_	5	_	5	_	5	_	ns	10
Output disable to output in high-Z	^t OHZ	0	30	0	35	0	40	0	50	ns	10, 11

Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) (OE Low Fixed)

- Notes: 1. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write
 - 2. t_{CW} is measured from \overline{CS} going low to the end of write.
 - 3. t_{AS} is measured from the address valid to the beginning of write.
 - 4. t_{WR} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
 - 5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
 - 6. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output remain in a high impedance state.
 - 7. Dout is the same phase of the write data of this write cycle.
 - 8. Dout is the read data of next address.
 - 9. If \overline{CS} is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the output must not be applied to them.
 - 10. This parameter is sampled and not 100% tested.
 - 11. t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

Low V_{CC} **Data Retention Characteristics** (Ta = 0 to $+70^{\circ}$ C)

This characteristics is guaranteed only for L/L-SL version.

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
V _{CC} for data retention	V _{DR}	2	_	_	V	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V, Vin} \ge 0 \text{ V}$
Data retention current	I _{CCDR}		0.2	30*2	μA	V _{CC} = 3.0 V, Vin ≥ 0 V
		_	0.2	10 ^{*3}	μΑ	$\overline{\text{CS}} \ge V_{\text{CC}} - 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	t _{RC} *4	_	_	ns	_

Low V_{CC} Data Retention Timing Waveform

1 Typical values are at V_{CC} = 3.0 V, Ta = +25°C and not guaranteed. 2. 20 μ A max at Ta = 0 to +40°C. (only for L-version) Notes: 1

- 3. $3 \mu A \text{ max at Ta} = 0 \text{ to } +40 ^{\circ}\text{C}$. (only for L-SL version)
- 4. t_{RC} = read cycle time.
 5. CS controls address buffer, WE buffer, OE buffer, and Din buffer. If CS controls data retention mode, Vin levels (address, WE, OE, I/O) can be in the high impedance state.