
4 Mbit (256Kb x16) UV EPROM and OTP EPROM

OPERATION FAST ACCE LOW POWE Active Cur Standby C PROGRAMM PROGRAMM ELECTRON	SS TIME: 45ns R CONSUMPTION: rrent 70mA at 10MHz Current 100µA MING VOLTAGE: 12.75V ± 0.25V MING TIME: 100µs/byte (typical) IC SIGNATURE urer Code: 0020h	40 ⁴⁰ FDIP40W (F		олР40 (В)
			JLCC44W (J)	
DESCRIPTION	Ň			
	/ (ultra violet erase) and OTP (one nable). It is ideally suited for micro-			
	(window ceramic frit-seal package)	PLCC44		20 (N)
and the JLCC have transpare pose the chip pattern. A new	44W (J-lead chip carrier packages) ent lids which allow the user to ex- to ultraviolet light to erase the bit pattern can then be written to the wing the programming procedure.	Figure 1. Logic		
	and erasu s not recommed- offered in P40, P40, P40, P40, P40, P40, P40, P40,	18	V _{CC} V _{PP}	6
*	{	A0-A17		Q0-Q15
Table 1. Sign	al Names			i
A0-A17	Address Inputs	E	M27C4002	
Q0-Q15	Data Outputs	G		
E	Chip Enable			
G	Output Enable			
V _{PP}	Program Supply		N/	
V _{CC}	Supply Voltage		VSS	AI00727B
V _{SS}	Ground			
September 1998				1/16

Figure 2A. DIP Pin Connections

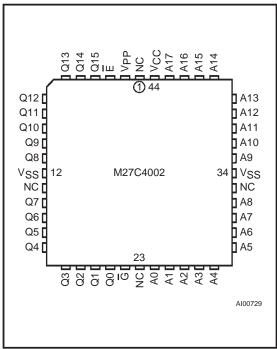

VPP [1 0	40 VCC
E T		39 A17
Q15		38 A16
Q14		37 A15
Q13	5	36 🛛 A14
Q12	6	35 🛛 A13
Q11 🕻	7	34 🛛 A12
Q10 🛾	8	33 🛛 A11
Q9 [9	32 🛛 A10
Q8 🛛	¹⁰ M27C4002	31 🛛 A9
Vss 🛙	11	30 J V _{SS}
Q7 [12	29] A8
Q6 [13	28 🛛 A7
Q5 [14	27 🛛 A6
Q4 🕻		26 🛛 A5
Q3 [25] A4
Q2 🛽		24 🛛 A3
Q1 [23 A2
		22 A1
G	20	21 🛛 A0
	AIO	00728

Figure 2C. TSOP Pin Connections

2/16

Figure 2B. LCC Pin Connections

Warning: NC = Not Connected.

DEVICE OPERATION

The operating modes of the M27C4002 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for V_{pp} and 12V on A9 for Electronic Signature.

Read Mode

The M27C4002 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{E}) is the power control and should be used for device selection. Output Enable (\overline{G}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (tavQv) is equal to the delay from \overline{E} to output (tELQv). Data is available at the output after a delay of tGLQv from the falling edge of \overline{G} , assuming that \overline{E} has been low and the addresses have been stable for at least tavQv-tGLQv.

Standby Mode

The M27C4002 has a standby mode which reduces the supply current from 50mA to 100μ A. The M27C4002 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input.

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature ⁽³⁾	-40 to 125	°C
T _{BIAS}	Temperature Under Bias	-50 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
V _{IO} ⁽²⁾	Input or Output Voltages (except A9)	–2 to 7	V
V _{CC}	Supply Voltage	–2 to 7	V
V _{A9} ⁽²⁾	A9 Voltage	-2 to 13.5	V
V _{PP}	Program Supply Voltage	-2 to 14	V

Table 2. Absolute Maximum Ratings⁽¹⁾

Notes: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2. Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is V_{CC} +0.5V with possible overshoot to V_{CC} +2V for a period less than 20ns.

3. Depends on range.

Table 3. Operating Modes

Mode	Ē	l0	A9	V _{PP}	Q0 - Q15
Read	V _{IL}	V _{IL}	Х	$V_{CC} \text{ or } V_{SS}$	Data Out
Output Disable	VIL	V _{IH}	Х	$V_{CC} \text{ or } V_{SS}$	Hi-Z
Program	V _{IL} Pulse	V _{IH}	Х	V _{PP}	Data In
Verify	V _{IH}	VIL	Х	V _{PP}	Data Out
Program Inhibit	V _{IH}	V _{IH}	Х	V _{PP}	Hi-Z
Standby	V _{IH}	Х	Х	$V_{CC} \text{ or } V_{SS}$	Hi-Z
Electronic Signature	VIL	VIL	V _{ID}	V _{CC}	Codes

Note: $X = V_{IH}$ or V_{IL} , $V_{ID} = 12V \pm 0.5V$

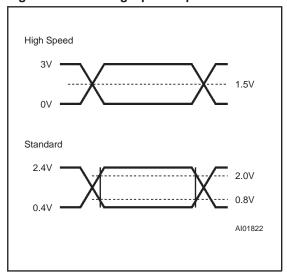
Table 4. Electronic Signature

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	V _{IL}	0	0	1	0	0	0	0	0	20h
Device Code	VIH	0	1	0	0	0	1	0	0	44h

Note: Outputs Q8-Q15 are set to '0'.

Two Line Output Control

Because EPROMs are usually used in larger memory arrays, the product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:


a. the lowest possible memory power dissipation,

b. complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, \overline{E} should be decoded and used as the primary device selecting function, while \overline{G} should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

	High Speed	Standard
Input Rise and Fall Times	≤ 10ns	≤ 20ns
Input Pulse Voltages	0 to 3V	0.4V to 2.4V
Input and Output Timing Ref. Voltages	1.5V	0.8V and 2V

Figure 3. AC Testing Input Output Waveform

Table 5. AC Measurement Conditions

$\begin{array}{c} 1.3V \\ \hline 1N914 \\ \hline 3.3k\Omega \\ \hline UNDER \\ TEST \\ \hline C_L \\ \hline C_L \\ = 30pF \text{ for High Speed} \\ C_L = 100pF \text{ for Standard} \\ C_L \text{ includes JIG capacitance} \\ \end{array}$

Figure 4. AC Testing Load Circuit

Table 6. Capacitance⁽¹⁾ ($T_A = 25 \text{ °C}, f = 1 \text{ MHz}$)

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		6	pF
Соит	Output Capacitance	$V_{OUT} = 0V$		12	pF

Note: 1. Sampled only, not 100% tested.

System Considerations

The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, I_{CC} , has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of \overline{E} . The magnitude of the transient current peaks is dependent on the output capacitive and inductive loading of the device.

The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1μ F ceramic capacitor be used on every device between V_{CC} and Vss. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

Table 7. Read Mode DC Characteristics ⁽¹⁾ (T_A = 0 to 70 °C or -40 to 85 °C; V_{CC} = 5V \pm 5% or 5V \pm 10%; V_{PP} = V_{CC})

Symbol	Parameter	Test Condition	Min	Max	Unit
Iц	Input Leakage Current	$0V \leq V_{IN} \leq V_{CC}$		±10	μA
I _{LO}	Output Leakage Current	$0V \le V_{OUT} \le V_{CC}$		±10	μA
I _{CC}	Supply Current	$\overline{E} = V_{IL}, \overline{G} = V_{IL},$ $I_{OUT} = 0mA, f = 10MHz$		70	mA
		$\overline{E} = V_{IL}, \overline{G} = V_{IL},$ $I_{OUT} = 0mA, f = 5MHz$		50	mA
I _{CC1}	Supply Current (Standby) TTL	Ē = V _{IH}		1	mA
I _{CC2}	Supply Current (Standby) CMOS	\overline{E} > V _{CC} - 0.2V		100	μA
IPP	Program Current	$V_{PP} = V_{CC}$		10	μA
VIL	Input Low Voltage		-0.3	0.8	V
V_{IH} $^{(2)}$	Input High Voltage		2	V _{CC} + 1	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage TTL	I _{OH} = -400μA	2.4		V
• OH	Output High Voltage CMOS	I _{OH} = −100μA	$V_{CC} - 0.7V$		V

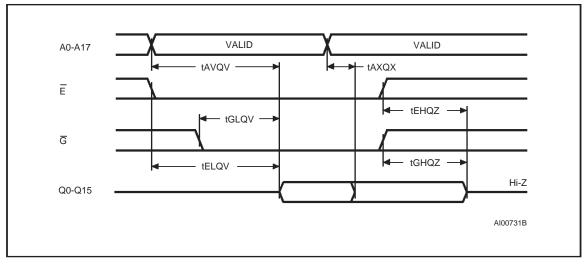
Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. 2. Maximum DC voltage on Output is V_{CC} +0.5V.

Table 8A. Read Mode AC Characteristics⁽¹⁾

$(T_A = 0 \text{ to } 70 \circ C \text{ or } -4)$) to 85 °C; Vcc =	= 5V ± 5% or 5V :	t 10%; Vpp = Vcc	;)
---	-------------------	-------------------	------------------	----

			Test				M270	4002				
Symbol	Alt	Parameter	Condition	-45	⁽³⁾	-60) ⁽³⁾	-8	30	-9	90	Unit
				Min	Max	Min	Мах	Min	Мах	Min	Max	
t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$		45		60		80		90	ns
t _{ELQV}	t _{CE}	Chip Enable Low to Output Valid	$\overline{G} = V_{IL}$		45		60		80		90	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	$\overline{E} = V_{IL}$		25		30		40		40	ns
t _{EHQZ} ⁽²⁾	t _{DF}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	0	30	0	30	0	30	0	30	ns
t _{GHQZ} ⁽²⁾	t _{DF}	Output Enable High to Output Hi-Z	$\overline{E} = V_{IL}$	0	30	0	30	0	30	0	30	ns
t _{AXQX}	t _{OH}	Address Transition to Output Transition	$\overline{\underline{E}} = V_{IL},$ $\overline{G} = V_{IL}$	0		0		0		0		ns

Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.
2. Sampled only, not 100% tested.
3. In case of 70ns speed see High Speed AC Measurement conditions.



			Test				M270	4002				11
Symbol	Alt	Parameter	Test Condition	-1	10	-1	2	-1	15	-2	20	Unit
				Min	Мах	Min	Мах	Min	Мах	Min	Мах	1
t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{\underline{E}} = V_{IL}, \\ \overline{G} = V_{IL}$		100		120		150		200	ns
t _{ELQV}	t _{CE}	Chip Enable Low to Output Valid	$\overline{G} = V_{IL}$		100		120		150		200	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	$\overline{E} = V_{IL}$		50		60		60		70	ns
t _{EHQZ} ⁽²⁾	t _{DF}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	0	30	0	40	0	50	0	80	ns
t _{GHQZ} ⁽²⁾	t _{DF}	Output Enable High to Output Hi-Z	$\overline{E} = V_{IL}$	0	30	0	40	0	50	0	80	ns
t _{AXQX}	t _{OH}	Address Transition to Output Transition	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$	0		0		0		0		ns

Table 8B.	Read Mode AC	Characteristics ⁽¹⁾
-----------	--------------	--------------------------------

 $(T_A = 0 \text{ to } 70 \text{ }^{\circ}\text{C} \text{ or } -40 \text{ to } 85 \text{ }^{\circ}\text{C}; V_{CC} = 5V \pm 5\% \text{ or } 5V \pm 10\%; V_{PP} = V_{CC})$

Figure 5. Read Mode AC Waveforms

Programming

When delivered (and after each erasure for UV EPROM), all bits of the M27C4002 are in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to

change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27C4002 is in the programming mode when V_{PP} input is at 12.75V, \overline{G} is at V_{IH} and \overline{E} is pulsed to V_{IL}. The data to be programmed is applied to 16 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. V_{CC} is specified to be 6.25V \pm 0.25V.

6/16

Symbol	Parameter	Test Condition	Min	Мах	Unit
ILI	Input Leakage Current	$0 \leq V_{IN} \leq V_{CC}$		±10	μΑ
Icc	Supply Current			50	mA
I _{PP}	Program Current	$\overline{E} = V_{IL}$		50	mA
VIL	Input Low Voltage		-0.3	0.8	V
V _{IH}	Input High Voltage		2	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$		0.4	V
V _{OH}	Output High Voltage TTL	I _{OH} = -400μA	2.4		V
V _{ID}	A9 Voltage		11.5	12.5	V

Table 9. Programming Mode DC Characteristics ⁽¹⁾ ($T_A = 25 \text{ °C}$; $V_{CC} = 6.25V \pm 0.25V$; $V_{PP} = 12.75V \pm 0.25V$)

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

Table 10. Programming Mode AC Characteristics ⁽¹⁾ (T_A = 25 °C; V_{CC} = $6.25V \pm 0.25V$; V_{PP} = $12.75V \pm 0.25V$)

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
t _{AVEL}	t _{AS}	Address Valid to Chip Enable Low		2		μs
t _{QVEL}	t _{DS}	Input Valid to Chip Enable Low		2		μs
t _{VPHEL}	t _{VPS}	V _{PP} High to Chip Enable Low		2		μs
t _{VCHEL}	t _{VCS}	V _{CC} High to Chip Enable Low		2		μs
t _{ELEH}	t _{PW}	Chip Enable Program Pulse Width		95	105	μs
t _{EHQX}	t _{DH}	Chip Enable High to Input Transition		2		μs
t _{QXGL}	t _{OES}	Input Transition to Output Enable Low		2		μs
tglqv	t _{OE}	Output Enable Low to Output Valid			100	ns
t _{GHQZ}	t _{DFP}	Output Enable High to Output Hi-Z		0	130	ns
t _{GHAX}	t _{AH}	Output Enable High to Address Transition		0		ns

Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. 2. Sampled only, not 100% tested.

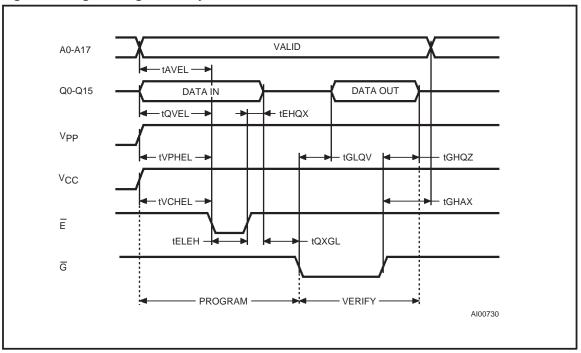
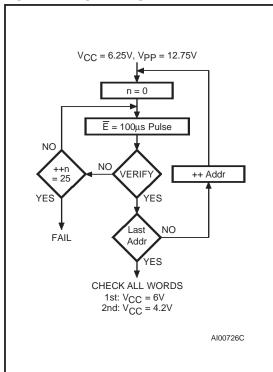



Figure 6. Programming and Verify Modes AC Waveforms

PRESTO II Programming Algorithm

PRESTO II Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of 26.5 seconds. Programming with PRESTO II consists of applying a sequence of 100µs program pulses to each byte until a correct verify occurs (see Figure 7). During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogrampulse is applied since the verify in MARGIN MODE provides necessary margin to each programmed cell.

Program Inhibit

Programming of multiple M27C4002s in parallel with different data is also easily accomplished. Except for \overline{E} , all like inputs including \overline{G} of the parallel M27C4002 may be common. A TTL low level pulse applied to a M27C4002's \overline{E} input, with VPP at 12.75V, will program that M27C4002. Ahigh level \overline{E} input inhibits the other M27C4002s from being programmed.

Program Verify

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with \overline{G} at V_{IL}, \overline{E} at V_{IH}, V_{PP} at 12.75V and V_{CC} at 6.25V.

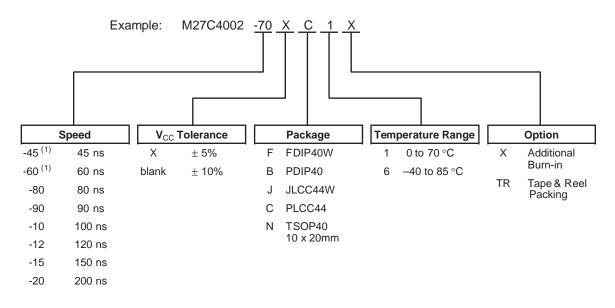
57

8/16

On-Board Programming

The M27C4002 can be directly programmed in the application circuit. See the relevant Application Note AN620.

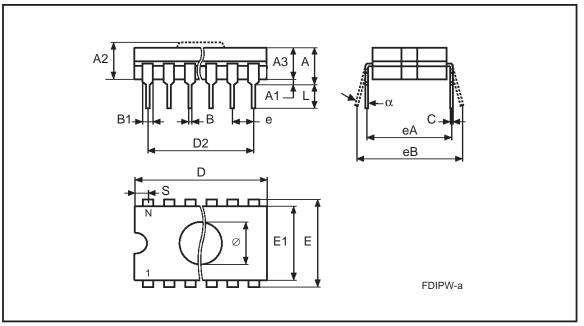
Electronic Signature


The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27C4002. To activate the ES mode, the programming equipmentmust force 11.5V to 12.5V on address line A9 of the M27C4002 with VPP=Vcc=5V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode. Byte 0 (A0=VIL) represents the manufacturer code and byte 1 (A0=VIH) the device identifier code. For the STMicroelectronics M27C4002, these two identifier bytes are given in Table 4 and can be read-out on outputs Q0 to Q7.

ERASURE OPERATION (applies to UV EPROM)

The erasure characteristics of the M27C4002 are such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27C4002 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27C4002 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27C4002 window to prevent unintentional erasure. The recommended erasure procedure for the M27C4002 is exposure to short wave ultraviolet light which has wavelength 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm2. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 μ W/cm² power rating. The M27C4002 should be placed within 2.5cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.

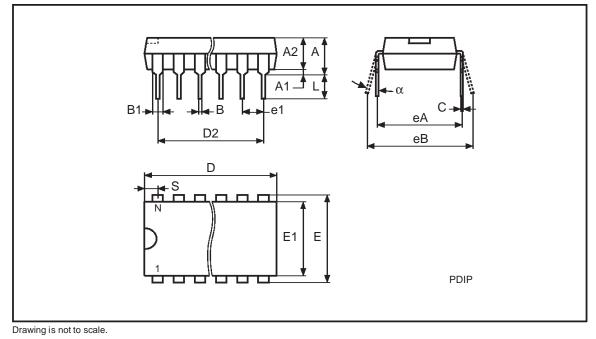
ORDERING INFORMATION SCHEME



Note: 1. High Speed, see AC Characteristics section for further information.

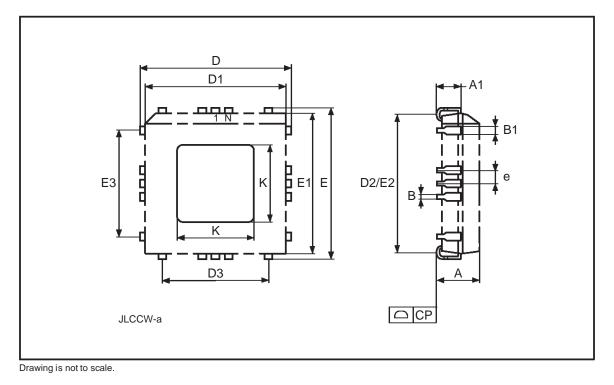
For a list of available options (Speed, Package etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

Symb	mm			inches		
	Тур	Min	Мах	Тур	Min	Max
А			5.72			0.225
A1		0.51	1.40		0.020	0.055
A2		3.91	4.57		0.154	0.180
A3		3.89	4.50		0.153	0.177
В		0.41	0.56		0.016	0.022
B1	1.45	-	-	0.057	_	-
С		0.23	0.30		0.009	0.012
D		51.79	52.60		2.039	2.071
D2	48.26	-	-	1.900	-	-
E	15.24	-	-	0.600	-	-
E1		13.06	13.36		0.514	0.526
е	2.54	-	-	0.100	-	-
eA	14.99	-	-	0.590	-	-
eB		16.18	18.03		0.637	0.710
L		3.18			0.125	
S		1.52	2.49		0.060	0.098
Ø	7.62	-	-	0.300	_	-
α		4°	11°		4°	11°


Drawing is not to scale.

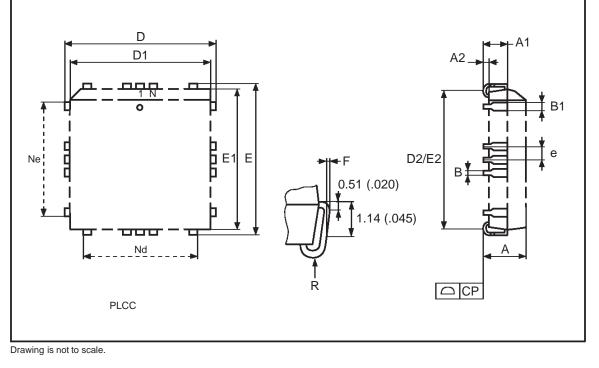
11/16

Symb	mm			inches			
	Тур	Min	Max	Тур	Min	Max	
А	4.45	-	-	0.175	-	-	
A1	0.64	0.38	-	0.025	0.015	-	
A2		3.56	3.91		0.140	0.154	
В		0.38	0.53		0.015	0.021	
B1		1.14	1.78		0.045	0.070	
С		0.20	0.31		0.008	0.012	
D		51.78	52.58		2.039	2.070	
D2	48.26	-	-	1.900	-	-	
E		14.80	16.26		0.583	0.640	
E1		13.46	13.99		0.530	0.551	
e1	2.54	-	-	0.100	-	-	
eA	15.24	-	-	0.600	-		
eB		15.24	17.78		0.600	0.700	
L		3.05	3.81		0.120	0.150	
S		1.52	2.29		0.060	0.090	
α		0°	15°		0É	15É	

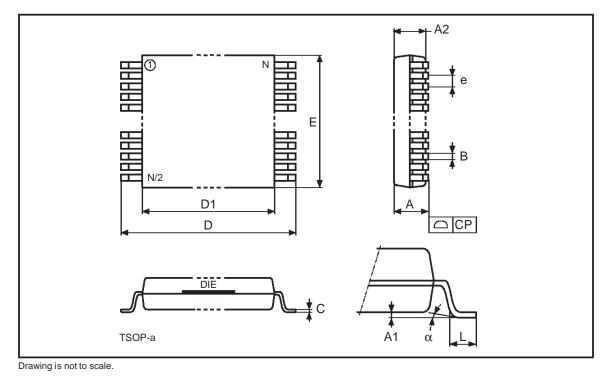

PDIP40 - 40 pin Plastic DIP, 600 mils width

Symb		mm		inches		
Cynio	Тур	Min	Max	Тур	Min	Max
А		3.94	4.83		0.155	0.190
A1		2.29	3.05		0.090	0.120
В		0.43	0.53		0.017	0.021
B1		0.66	0.81		0.026	0.032
D		17.40	17.65		0.685	0.695
D1		16.00	16.89		0.630	0.665
D2		14.74	16.26		0.580	0.640
D3	12.70	-	-	0.500	-	-
E		17.40	17.65		0.685	0.695
E1		16.00	16.89		0.630	0.665
E2		14.74	16.26		0.580	0.640
E3	12.70	-	-	0.500	-	-
е	1.27	-	-	0.050	-	-
К	10.16	-	-	0.400	-	-
N	44				. 44	•
СР			0.10			0.004

JLCC44W - 44 lead Ceramic Chip Carrier J-lead, square window



Symb	mm			inches		
Cynno	Тур	Min	Max	Тур	Min	Мах
А		4.20	4.70		0.165	0.185
A1		2.29	3.04		0.090	0.120
A2		-	0.51		-	0.020
В		0.33	0.53		0.013	0.021
B1		0.66	0.81		0.026	0.032
D		17.40	17.65		0.685	0.695
D1		16.51	16.66		0.650	0.656
D2		14.99	16.00		0.590	0.630
E		17.40	17.65		0.685	0.695
E1		16.51	16.66		0.650	0.656
E2		14.99	16.00		0.590	0.630
е	1.27	-	-	0.050	-	-
F		0.00	0.25		0.000	0.010
R	0.89	-	-	0.035	-	-
N	44				. 44	
СР			0.10			0.004



14/16

57

Symb		mm		inches			
e y me	Тур	Min	Max	Тур	Min	Мах	
А			1.20			0.047	
A1		0.05	0.15		0.002	0.006	
A2		0.95	1.05		0.037	0.041	
В		0.17	0.27		0.007	0.011	
С		0.10	0.21		0.004	0.008	
D		19.80	20.20		0.780	0.795	
D1		18.30	18.50		0.720	0.728	
E		9.90	10.10		0.390	0.398	
е	0.50	-	-	0.020	-	-	
L		0.50	0.70		0.020	0.028	
α		0°	5°		0°	5°	
N		40			40		
СР			0.10	1		0.004	

TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20mm

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics © 1998 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.