\square MN101D10F , MN101D10G

Type
ROM (×8-bit)
RAM ($\times 8$-bit)

MN101D10F	MN101D10G
96 K	128 K
2.5 K	3.5 K

正 Execution Time

With main clock operated $\quad 0.1397 \mu \mathrm{~s}$ (at 4.0 V to $5.5 \mathrm{~V}, 14.32 \mathrm{MHz}$)
$71.5 \mu \mathrm{~s}$ (at 2.7 V to 5.5 V fixed to 14.32 MHz internal frequency division)
$61 \mu \mathrm{~s}$ (at 2.5 V to $5.5 \mathrm{~V}, 32.768 \mathrm{kHz}$)

Interrupts

-RESET •Runaway • External 0 • External 1 • External 2 • External 3 • External 4

- Timer 0 • Timer 1 •Timer $2 \cdot$ Timer 3 •Timer $6 \cdot$ Capstan FG •Control • HSW
- Cylinder(Drum) FG • Servo V-sync •Synchronous output • OSD • XDS • Serial 0
- Serial 1 •Serial $2 \cdot$ PWM 4 •OSDV-sync

Timer Counter	Timer counter 0: 8 -bit $\times 1$ (timer function)
	Clock source 1/4, 1/16 of system clock frequency
	Interrupt source overflow of timer counter 0
	Timer counter 1: 8-bit $\times 1$ (timer function, linear timer counter function)
	Clock source 1/4 of system clock frequency; CTL signal
	Interrupt source overflow of timer counter 1
	Timer counter 2: 16-bit $\times 1$ (timer function, input capture, duty judgment of CTL signal(VISS/VASS detection function), generation of remote control output carrier frequency)
	Clock source 1/4, 1/16, 1/24 of system clock frequency
	Interrupt source overflow of timer counter 2; input of CTL specified edge; underflow of timer 2 shift register 4-bit counter; coincidence of timer 2 shift register with timer 2 shift register compare register

Timer counter 3: 16-bit $\times 1$ (timer function, generation of serial transmission clock)
Clock source 1/4, 1/16 of system clock frequency
Interrupt source overflow of timer counter 3
Timer counter 5: 19-bit $\times 1$ (watchdog, stable oscillation waiting function)
Clock source \qquad system clock
Watchdog interrupt source $\cdots 1 / 2^{16}, 1 / 2^{19}$ of timer counter 5 frequency
Clear by stable oscillation \cdots after 256 counts by timer counter 5 (2^{18} counts of OSC oscillation clock)
Timer counter 6: 16-bit $\times 1$ (clock function [max. 2 s])
Clock source \qquad 1/512 of OSC oscillation clock frequency; XI oscillation clock; $1 / 8,1 / 128$ of system clock frequency
Interrupt source $1 / 2^{13}, 1 / 2^{14}, 1 / 2^{15}$ overflow of timer counter 6

Serial Interface

Serial 0: 8-bit $\times 1$ (synchronous type)
(transfer direction of MSB/LSB selectable, start condition function)
Clock source 1/8, 1/16, 1/32, 1/64, 1/128, 1/256 of system clock frequency; NSBT0 pin input
Serial 1: 8-bit $\times 1$ (synchronous type/remote control transmission)
(transfer direction of MSB/LSB selectable, start condition function)
Clock source 1/8, 1/16, 1/32, 1/64, 1/128, 1/256 of system clock frequency; 2-division timer 3 output; NSBT1 pin input
Remote control clock 2-division timer 3 output
Serial 2: 8-bit $\times 1\left(I^{2} \mathrm{C}\right)$ (master transmission/reception, slave transmission/reception)
Clock source \qquad . $1 / 144$ to $1 / 252$ of system clock; SCK pin input

OSD	Display mode	menu(intermal synchronized) display, superimpose(externally synchronized) display
	Applicable broadcasting system	NTSC, PAL, PAL-M, PAL-N
	Screen configuration	24 characters $\times 2 \mathrm{n}$ rows ($\mathrm{n}=1$ to 6)
	Character type	max. 256 character types (variable, include special characters)
	Character size	12×18 dots (vertical direction: 1 dot for 2 H at not enlargement)
	Enlarged characters	each $\times 2$ settings in horizontal and vertical
	Character interpolation	none
	Line background color	8 -hue settable in the row unit at menu display
	Line background intensity	8 gradations settable in the row unit
	Screen background color :	8 -huesettable at menu display
	Character color	white
	Character intensity	8 gradations settable in the row unit
	Border function	1-dot border in 8 directions
	Border brightness	4 gradations settable in the row unit
	Blinking	none (covered by software)
	Inverted character	settable in the character unit
	Halftone	none
	Input	composite video signal input (output level: $1 \mathrm{~V}[\mathrm{p}-\mathrm{p}] / 2 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$)
	Clamp method	sync tip clamp, clamp level in 4 levels
	Output	composite video output
	Measure against image fluctuation	built-in AFC circuit
	Dot clock	1/2 of OSC oscillation clock (automatic phase adjustment)
	MESECAM compatibility	Subcarrier leak function for superimpose display
XDS	Built-in U.S. closed caption data slicer (optional 1 line data can be extracted.)	
ROM Correction	Correcting address designation: up to 3 addresses possible Correction method: correction program being saved in internal RAM	
I/O Pins	76 • Common use: 56	
	1 - Common use: 1	
A/D Inputs	8-bit $\times 12$-ch. (without S/H)	
PWM	$\begin{aligned} & \text { 13-bit } \times 2 \text {-ch. (at repetition cycle } 572 \mu \mathrm{~s} \text { at } 14.32 \mathrm{MHz} \text {), } \\ & \text { 8-bit } \times 1 \text {-ch. (at repetition cycle } 35.7 \mu \mathrm{~s}, 0.572 \mathrm{~ms}, 1.14 \mathrm{~ms}, 2.29 \mathrm{~ms} \text { at } 14.32 \mathrm{MHz} \text {) } \end{aligned}$	
ICR	$\begin{aligned} & 16 \text {-bit } \times 2 \text {-ch.(Speed system), } \\ & 18 \text {-bit } \times 4 \text {-ch.(Phase system) } \\ & \hline \end{aligned}$	
OCR	16 -bit $\times 3$ (Synchronous output $\times 2$, Rec $\mathrm{CTL} \times 1$)	
Special Ports	3-state output (PTO) VLP pin; CTL input;Capstan FG input; Cylinder(Drum) PG/FG inputs; HSW output; Head amp/ Rotary outputs; built-in FG amp; output of 1/4 OSC oscillation clock (1 V[p-p])	

Notes

See the next page for electrical characteristics, pin assignment and support tool.

Electrical Characteristics

Supply current

Parameter	Symbol	Condition	Limit			Unit
			min	typ	max	
Operating supply current	IDD1	14.32 MHz operation without load, VDD $=5 \mathrm{~V}$		50	100	mA
	IDD2	1/1024 of 14.32 MHz operation without load, VDD $=2.7 \mathrm{~V}$		2	5	mA
	IDD3	Stop of 14.32 MHz oscillation, VDD $=2.7 \mathrm{~V}$ 32 kHz oscillation operation without load		50	100	$\mu \mathrm{A}$
Supply current at STOP	IDSP	Stop of oscillation without load, VDD $=5 \mathrm{~V}, \mathrm{Ta}=55^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
Supply current at HALT	IDHT0	14.32 MHz oscillation without load, VDD $=5 \mathrm{~V}$		5	15	mA
	IDHT1	Stop of 14.32 MHz oscillation, $\mathrm{VDD}=2.7 \mathrm{~V}$ 32 kHz oscillation operation without load		5	20	$\mu \mathrm{A}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}, \mathrm{VSS}=0 \mathrm{~V}\right.$						

A/D Converter Performance

Parameter	Symbol	Condition	Limit			Unit
			min	typ	max	
Conversion relative error	$\triangle \mathrm{NLAD}$				± 3	LSB
A/D Conversion Time	tAD	$\mathrm{fosc}=14.32 \mathrm{MHz}$		8		$\mu \mathrm{s}$
Analog Input Voltage					5	V

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}\right)
$$

Pin Assignment

Support Tool

In-circuit Emulator	PX-ICE101C / D + PX-PRB101D10-QFP100-P-1818B-CN-M	
Flash Memory Built-in Type	Type	MN101DF10GAF
	ROM ($\times 8$-bit)	128 K
	RAM ($\times 8$-bit)	4 K
	Minimum instruction execution time	$0.1397 \mu \mathrm{~s}$ (at 4.0 V to $5.5 \mathrm{~V}, 14.32 \mathrm{MHz}$)
		$71.5 \mu \mathrm{~s}$ (at 2.7 V to 5.5 V , fixed to 14.32 MHz internal division)
		$61 \mu \mathrm{~s}$ (at 2.5 V to $5.5 \mathrm{~V}, 32.768 \mathrm{kHz}$)
	Package	QFP100-P-1818B *Lead-free

Request for your special attention and precautions in using the technical information and semiconductors described in this material

(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technical information described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this material is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license.
(3) We are not liable for the infringement of rights owned by a third party arising out of the use of the technical information as described in this material.
(4) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(5) The products and product specifications described in this material are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(7) When using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged.
(8) This material may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

